Detecting Causal Chains in Small-N Data
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The first part of this paper shows that Qualitative Comparative Analysis
(QC A)—also in its most recent form as presented in Ragin (2008)—, does
not correctly analyze data generated by causal chains. The incorrect model-
ing of data originating from chains essentially stems from QC A’s reliance
on Quine-McCluskey optimization to eliminate redundancies from sufficient
and necessary conditions. Baumgartner (2009a,b) has introduced a Bool-
ean methodology, termed Coincidence Analysis (C'N A), that is related to
QC A, yet, contrary to the latter, does not eliminate redundancies by means of
Quine-McCluskey optimization. The second part of the paper applies CN A
to chain-generated data. It will turn out that C'N A successfully detects causal
chains in small-N data.
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1. INTRODUCTION

Since its first detailed presentation in Ragin (1987), Qualitative Comparative Anal-
ysis (QC'A) has become a widely used methodology to causally model small- and
intermediate- N data in the social sciences. While QC A has originally been de-
veloped for conventional crisp sets, Ragin (2000, 2008) has fruitfully adapted the
method for (purposefully calibrated) fuzzy sets. These recent adaptations have
considerably widened QQC A’s domain of applicability and enhanced the level of
precision that can be achieved by QC A analyses. At the same time, they have not
altered QC A’s computational core. By systematic comparisons of the cases con-
stituting QC'A’s input data, Boolean combinations of conditions are identified as
being sufficient and/or necessary for an outcome. As complex sufficient and neces-
sary conditions typically involve redundancies, they must be rigorously minimized
before they are amenable to a causal interpretation (cf. Baumgartner 2008). Both
in crisp set QC A (csQCA) and in fuzzy set QC A (fsQC A) such redundancies
are eliminated by means of Quine-McCluskey optimization of truth functions.

In section 2, I show that minimizing causal conditions on the basis of Quine-
McCluskey optimization imposes significant constraints on the complexity of the
causal structures that can be uncovered by use of QC'A; in particular, it prevents
QC A from correctly modeling data generated by causal chains. (To avoid com-
plications that are dispensable for the purposes of this paper, I am going to fo-
cus on crisp set analyses only.) Eliminating redundancies from causal conditions
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by means of Quine-McCluskey optimization requires that all 2™ logically possible
configurations of n conditions are compatible with the causal structure under inves-
tigation. However, this requirement is not satisfied if, as in case of causal chains,
there are causal dependencies among the n analyzed conditions themselves.

Baumgartner (2009a,b) has introduced a Boolean methodology for the causal
analysis of configurational data termed Coincidence Analysis (C' N A) that is related
to QC A, yet does not minimize conditions with recourse to Quine-McCluskey op-
timization. As a direct consequence, C N A does not need to assume that all 2"
logically possible configurations of n investigated conditions are compatible with
underlying causal structures. This, in turn, renders C'N A applicable to data stem-
ming from causal chains. Section 3 reviews C'N A’s alternative minimization pro-
cedure. While in Baumgartner (2009a,b) C'N A has been introduced as a general
Boolean procedure that processes any kind of configurational data, the presentation
in section 3 is tailored to social scientific practice. Moreover, the aim of section 3 is
to clarify the relevant differences between QC'A and C'N A, rather than to discuss
the computational details of C'N A. Finally, section 4 shows that its custom-built
minimization procedure enables C'N A to successfully model data that result from
causal chains.

To render the computational differences between QC'A and C N A as trans-
parent and accessible as possible, my discussion will turn on artificially simple
hypothetical examples and I am going to sidestep all practical complications that
inevitably arise when it comes to applying Boolean methodologies to real-life data.
Comparing QC A and C'N A with respect to their respective handling of real-life
data has to await another occasion (for an application of C''N A to more complex
data tables cf. Baumgartner 2009a).

2. QCA AND CAUSAL CHAINS

To illustrate the basic analytical techniques of (QC' A, consider the (truth) table 1
which represents hypothetical country-level data on two causal conditions, strong
unions (U) and strong left parties (L), and one outcome, generous welfare state
(G) (ct. Ragin 2008, chs. 8, 9). The rows of table 1 can be read as standing for
types of countries. For instance, c; represents countries featuring strong unions,

#|U L G
a1l 1 1
co |1 0 1
c3| 0 1 1
ca| 0 0 O

Table 1. Exemplary data table as processed by QC A with U representing “strong
unions”, L “strong left parties”, and G “generous welfare state”.



strong left parties, and a generous welfare state, whereas co exhibits countries with
strong unions, weak left parties, and a generous welfare state, and analogously for
the other rows.

In a first step, QC A identifies sufficient conditions of the investigated out-
come—( in our example. In table 1, the conjunction of U and L, which I sym-
bolize by a mere concatenation of U and L, is sufficient for G, i.e. it holds that
UL — G.! Or in words: whenever a country has strong unions and strong left
parties, it also has a generous welfare state. Rows c2 and c3 also feature suffi-
cient conditions of G. All countries with strong unions and weak left parties or
weak unions and strong left parties exhibit welfare generosity, i.e. UL — G and
UL — G, where L and U represent the negations of L and U.

In a second step, QC A eliminates all redundancies from these sufficient con-
ditions. As anticipated in the introduction, this is accomplished on the basis of
Quine-McCluskey optimization. To determine whether, say, the (complex) con-
dition UL, which is exemplified in c¢; of table 1, is not only sufficient but also
minimally sufficient for G, Quine-McCluskey optimization requires parsing the in-
put table to find other rows that accord with ¢; in regard to the outcome and all
(atomic) conditions except for one. In table 1, two such rows exist for c;: ¢z and
c3. In cg all conditions are the same as in c¢;, except for L which is absent in ¢
and present in ¢;. In c3 all conditions are the same as in c;, except for U which
is absent in c3 and present in ¢;. Both rows ¢y and c3 also feature sufficient con-
ditions of G. The pair of rows (c1, c2) shows that U alone (independently of L)
is sufficient for G, and the pair (c1, c3) reveals that L alone is sufficient for G.
That is, our first sufficient condition U L contains two sufficient proper parts, viz.
U and L, where a proper part of a conjunction Z1Z5 . .. Z, designates the result
of a reduction of this conjunction by at least one conjunct. Moreover, the second
and third sufficient conditions UL and U L contain one sufficient proper part each:
U and L respectively. As both U and L do not contain any further proper parts,
they are not further minimizable. Thus, U and L each are minimally sufficient for
G—or in the terminology of Quine-McCluskey optimization: U and L are the two
prime implicants of G.

The feature of this minimization procedure that will be of crucial importance
for the sequel of this paper is that Quine-McCluskey optimization only eliminates
conjuncts of a sufficient condition if the input table actually contains a pair of rows
that accord with respect to the outcome as well all (atomic) conditions except for
one. If such a pair of rows does not exist for a particular sufficient condition, the
latter cannot be further minimized. To facilitate later reference to this restriction, I
furnish it with a label: I shall speak of the one-difference restriction.

Before we look at the consequences of the one-difference restriction, let us con-
clude this overview of the basics of QC A. After minimizing sufficient conditions,
QC A first identifies and then minimizes necessary conditions of the outcome. In
case of table 1, this final part of QC'A is straightforward. Every country consid-
ered in our hypothetical study that provides a generous welfare state also has either
strong unions or strong left parties. That is, the disjunction U V L is necessary



for G. Moreover, U V L does not contain necessary proper parts, where a proper
part of a disjunction Zy N Zs ...\ Z, designates the result of any reduction of
this disjunction by at least one disjunct. In our example, neither U nor L are them-
selves necessary for G, for there are cases in which G is given without U and cases
featuring G without L. U V L is hence minimally necessary for G.

Depending on investigated research questions, QC A can then be reapplied to
identify and minimize sufficient and necessary conditions for the absence of the
outcome. cy is the only row in table 1 featuring G. The configuration of conditions
in ¢4 is sufficient for G: UL — G. As there is no other row satisfying the one-
difference restriction with respect to c4, UL cannot be further minimized. UL
is, hence, minimally sufficient for G. Moreover, U L accounts for all occurrences
of G: G — UL. Since UL does not contain any necessary proper parts, it is
minimally necessary for G. At the end, QC A formally integrates all the uncovered
relations of minimal sufficiency and necessity in so-called solution formulas. Our
exemplary QC' A analysis produces the following solution formulas:

UVL+<G ; UL-G (1)

Finally, as all redundancies are removed from its solutions formulas, QC A pro-
ceeds to causally interpret the dependencies expressed in these formulas. In our ex-
ample, QC A rules that strong unions and strong left parties are alternative causes
of welfare generosity and that their joint absence is a complex cause of a stingy
welfare system.

Of course, the identification of minimally sufficient and necessary conditions
is not normally as straightforward as in case of table 1. One problem that regularly
affects the analysis of small-/V data is of particular relevance for our current pur-
poses, because, in combination with the one-difference restriction, this problem
imposes considerable constraints on the causal interpretability of corresponding
data and on the causal complexity uncovered by QCA. As Ragin and Sonnett
(2005, 180) put it:

Naturally occurring social phenomena are limited in their diversity. In fact,
it could be argued that limited diversity is one of their trademark features.

In the terminology of QC A, the diversity of configurational data is said to be lim-
ited if not all 2™ configurations of n conditions of an investigated outcome are
contained in these data (cf. Ragin 2000, 139). Such limitation may occur for a host
of different reasons. Social scientists are inevitably confined to the variety of cases
social reality and history happen to provide for them.

To make the problem arising from limited diversity more concrete, consider
table 2 which lists types of countries of another hypothetical study of the causal
connections between U, L, and G. Table 2 does not feature all 22 logically possi-
ble configurations of the two conditions U and L. Supposedly, in our second study
we did not find countries with strong unions and weak left parties, i.e. cases of type
UL are absent from the data. Such a missing configuration is commonly termed



#|U L G
a1l 1 1
c| 0 1 1
c3| 0 0 O

Table 2. Second hypothetical data table listing configurations of U (strong unions),
L (strong left parties), and G (generous welfare state).

a logical remainder. There are two sufficient conditions for GG in table 2, viz. the
conjunction of strong unions and strong left parties (U L in c1) and the conjunction
of weak unions and strong left parties (UL in cp). Furthermore, the pair of rows
(c1, co) satisfies the one-difference restriction and establishes that L alone is suffi-
cient for G, i.e. that L is minimally sufficient for G. However, the question remains
whether U is also minimally sufficient for G (or whether L is moreover necessary
for (). To answer that question we would have to know whether countries with
strong unions and weak left parties provide generous welfare systems or not. But
since the data available to us do not exhibit any countries of type UL, it is empir-
ically undetermined what value G would take in cases of this type. Furthermore,
table 2 features one sufficient condition for G, viz. the configuration UL in row
c3. As no other row accords with c3 in regard to all conditions except for one, UL
cannot be further minimized. However, if cases of type U L were in fact to exhibit
G, UL would be minimizable, for it would then turn out that L is itself sufficient
for G. These ambiguities illustrate the problem of limited diversity: since no case
of type UL is contained in the data, it is undeterminable, from the perspective of
QC A, whether both U and L are causes of G or G is only caused by L and whether
UL is a complex cause of G or not.

Empirical indeterminacies of this type can only be resolved if prior theoreti-
cal knowledge is available about the causal dependencies among investigated con-
ditions and outcomes. Such a theoretical background may have different impli-
cations on whether logical remainders could possibly have been instantiated in
analyzed cases or not and on what values the outcomes would have taken, had
remainders in fact been observed. That means background theories may have dif-
ferent ramifications for counterfactual cases. To do justice to these differences
in background knowledge, Ragin and Sonnett (2005) distinguish three different
strategies researchers may adopt when analyzing limitedly diverse data. Accord-
ing to the first and most conservative strategy—call it S;—, remainders are taken
to be excluded (or false), i.e. relevant background knowledge tells the researcher
that corresponding remainders could under no circumstances have been observed.
As to the second, intermediate strategy—So—, remainders are determined to be
empirically possible by background knowledge, which moreover supplies enough
information to decide which values an investigated outcome would have taken, had
a pertaining remainder in fact been observed. Finally, the third and most liberal
strategy—Ss—treats remainders as so-called don’t care cases, i.e. as empirically



#|U L G #|U L G
a1l 1 1 a1l 1 1
|0 1 1 |0 1 1
3|0 0 0 3|0 0 0
G110 1 a1 0 0

(a) (b)

Table 3. The two possible counterfactual completions of table 2.

possible cases for which outcomes may be set to whichever value yields the most
parsimonious solution formulas. In the terminology of QC A, don’t care cases are
said to be available as simplifying assumptions.

While the details of these strategies, which, among other things, involve intri-
cate assessments of how ““easy” or “difficult” relevant counterfactual claims are, are
of no concern to us here, it is important to note that the strategies generate different
solution formulas. I illustrate these differences by means of the hypothetical study
in table 2. S; does not add counterfactual cases to table 2. In consequence, the
question whether U is also minimally sufficient for G or L is moreover necessary
for GG has to be left open. Moreover, as the one-difference restriction is not met for
the one sufficient condition of G, viz. for U L, it cannot be further minimized. All
in all, 81 produces the following solution formulas for G and G, respectively:

L—-G; UL-G (2)

Contrary to 81, both Sy and Ss introduce the remainder U L as a counterfactual
case. Depending on what outcome value is assigned to this case, the completion of
table 2 yields either table 3a or 3b, where ¢ and c;* designate the two conceivable
counterfactual cases. According to Sz, the value of G is to be determined by the
researcher’s theoretical background. Let us assume that our currently best back-
ground theories on welfare systems entail that if a country had strong unions and
weak left parties, it would provide a generous welfare state. That is, we complete
table 2 by the counterfactual case c) and obtain table 3a. In this table, L is not
necessary for (7, as welfare generosity may also occur without strong left parties,
namely in countries with strong unions. G has two minimally sufficient conditions
in table 3a, U and L, whose disjunctive concatenation, U V L, is minimally nec-
essary for G. Moreover, as table 3a does not satisfy the one-difference restriction
for G’s sufficient condition U L, the latter turns out not to be further minimizable.
G occurs if and only if UL occurs. In sum, Sy produces the following solution
formulas relative to 3a:

UVL~G ; UL+G (3)

Finally, S3 also supplements the counterfactual configuration UL to generate
either table 3a or 3b. Contrary to S, however, S3 does not make the choice be-
tween 3a or 3b dependent on background theories, but simply chooses the table



that produces the more parsimonious solution formulas. In our exemplary case,
parsimony is maximized if countries with strong unions and weak left parties are
assumed not to provide a generous welfare state, i.e. if we settle for table 3b. In this
table, the one-difference restriction is satisfied for the sufficient conditions of both
G and G. There is a row that accords with ¢; in all but one respect, viz. ¢, and that
allows for the elimination of U from the sufficient condition U L of G; likewise,
there is a row that accords with c3 in all but one respect, viz. ¢;*, and that allows for
the elimination of U from the sufficient condition U L of G. Furthermore, L and L
are each not only sufficient but also necessary for G and G, respectively. Overall,
S3 yields the following solution formulas:

L&G; Led “4)

Plainly, tables 2 and 3 constitute very simple examples. Relative to more com-
plex data tables, differences between solution formulas produced by S, &2, and
S3 tend to be far greater. However, the solution formulas for our simple examples
have one commonality which they share with all QC'A solution formulas, inde-
pendently of the data’s complexity: QC' A always directly connects conditions to
outcomes. Depending on minimization strategies chosen, solution formulas may
differ with respect to the complexity of identified complex or alternative causes,
but QC A only assigns direct causes to outcomes. More concretely, QC A either
determines strong unions and strong left parties to be alternative causes of the gen-
erosity of the welfare system or strong left parties are identified as a both sufficient
and necessary cause of a generous welfare state. Under no circumstance would
QC' A conclude that conditions U and L are themselves causally connected. QC A
never models input data in terms of causal chains.

This is a direct consequence of minimizing sufficient conditions on the basis
of Quine-McCluskey optimization, which imposes the one-difference restriction.
Even though our initial input table 2 features no case such that strong unions are
combined with weak left parties, QC A requires the introduction of such a remain-
der as a counterfactual case in order to assess the minimality of sufficiency and
necessity relationships. Whenever an input table does not contain 2" configura-
tions of n conditions, QQC' A takes that table to be limited in its diversity. However,
that may be a hasty conclusion. It might well be that table 2 in fact contains all em-
pirically possible configurations of strong unions and strong left parties, because
these two conditions themselves might be causally dependent. As to table 2, every
country with strong unions also has strong left parties, i.e. U is sufficient for L.
This dependency must by no means stem from historical contingencies but could
be the result of U being a cause of L. That is, the data in table 2 might result from
a causal chain such that U is a cause of L which is a cause of GG. Row ¢g, that fea-
tures L without U, moreover indicates that U cannot be the only cause of L, for U
is not necessary for L. Accordingly, there exists at least one (unknown) alternative
cause Z of L which is not among the conditions considered in table 2. Overall, the
data in table 2 might stem from a causal structure as depicted in figure 1.



Figure 1. A causal chain model that fits the data in table 2.

It is beyond doubt that many social phenomena result from causal chains (cf.
Goertz 2006). In fact, chances are that the strength of unions and the strength of
left parties—at least in democratic countries—are tightly causally dependent. In
that case, both strategies S, and S3, by introducing the remainder UL as a coun-
terfactual case, distort the data that they intend to model in a way that violates the
actually underlying causal structure. The remainder UL is not compatible with U
being a sufficient cause of L. Hence, if the data in table 2 is really the result of the
chain in figure 1, both Sy and S3 generate causal models that severely misrepresent
the actual causal structure. By abstaining from introducing counterfactual cases,
strategy S; does not fallaciously distort the data, if table 2 indeed stems from a
chain. Nonetheless, S1 produces inadequate solution formulas. &1 does not prop-
erly minimize the sufficiency relationships in table 2. Just as Sz and S3, S; fails
to recognize the sufficiency of U for L and G and, thus, the direct causal relevance
of strong unions for strong left parties and the indirect relevance of strong unions
for welfare generosity. In sum, notwithstanding the fact that the chain in figure 1
perfectly fits the data in table 2, none of the search strategies supplied by QC' A
succeeds in modeling table 2 in terms of that chain.

Although the literature on QC A currently does not provide any other strate-
gies to process limitedly diverse data (cf. also Schneider and Wagemann 2010,
408), it might be argued that QC'A could be amended by a further search strat-
egy that assigns the chain in figure 1 to table 2 after all. In particular, it might
be held that a subdivision of causal chains into their separate layers yields causal
substructures that are amenable to a stepwise (QC' A analysis. Indeed, Schneider
and Wagemann (2006) have suggested a stepwise application of QC'A to remote
and proximate conditions of an outcome in order to distinguish among relevant
background contexts in which proximate conditions are causally efficacious. Even
though this so-called Tio-Step approach is not designed to uncover causal chains,
something along its lines might be proposed as a new QQC A strategy to process
chain-generated data. Such a search strategy—call it Sy, for short—could be
roughly spelled out as follows: in a first phase, QC'A is applied to identify the
direct causes of the ultimate outcome among the conditions; in a second phase,
QC A is sequentially reapplied to uncover the causal dependencies among the con-
ditions themselves.

Let us investigate whether S4 could indeed model table 2 in terms of the causal
chain in figure 1. In the first phase of S4, we hence apply QC A to identify the
direct causes of G in the set {U, L}. Here, the limited diversity of table 2 again



raises the question how to handle logical remainders. If no remainders are counter-
factually added, as in case of strategy S1, QC A is not able to determine whether
L is the only direct cause of G or whether U is also directly relevant to G. In
order to infer that L is the only direct cause of G, as in the chain of figure 1,
QC A has to treat the logical remainder UL as don’t care case in the first phase
of S;—analogously to S3. Such a coding of UL makes the case c;* available as
simplifying assumption. However, by counterfactually supplying the case c;* to
yield table 3b, a simplifying assumption is introduced that not only prompts QC' A
to infer that L is the only direct cause of G but also (in combination with the other
rows of table 3b) entails that U and L are independent. This independence, in turn,
contradicts the causal chain in figure 1. As a consequence, in its first phase, strat-
egy Sy inevitably faces a dilemma: either it cannot establish L as only direct cause
of G or it is forced to counterfactually add a logical remainder that renders U and
L independent and, hence, violates the causal chain that is being searched. Neither
horn of that dilemma results in an analysis of table 2 in terms of the chain in figure
1. Choosing the first horn reduces strategy S4 to S1, whereas choosing the second
horn reduces strategy S4 to Ss.

These considerations suggest that the problems (QC A faces when confronted
with chain-generated data do not stem from the current (accidental) unavailability
of a proper search strategy for such data. Rather, these problems stem from the
calculative core of the method. Minimizing configurational data on the basis of
Quine-McCluskey optimization presupposes that all 2™ logically possible combi-
nations of n analyzed conditions are empirically possible, which, in turn, presup-
poses that there are no causal dependencies among those n conditions. That is,
by resorting to Quine-McCluskey optimization and, hence, by subscribing to the
one-difference restriction, the QC A framework assumes that analyzed conditions
are mutually causally independent. For later reference I label this the independence
assumption, or (IND) for short. Even though, to my knowledge, Ragin has never ex-
plicitly stated that QC'A is only a correct method if (IND) is assumed, he tailors his
notion of causal complexity to the limitations (IND) imposes on QQC A-processable
complexity. He defines causal complexity as “a situation in which a given outcome
may follow from several different combinations of causal conditions” (2008, 124;
similarly in Ragin 1987, 23-26). In fact, if causal structures underlying configura-
tional data are assumed to have a maximal complexity as defined in this quotation,
(IND) is satisfied. I take this to indicate that QC A is, from the outset, designed
to analyze causal structures featuring exactly one effect and a possibly complex
configuration of mutually independent direct causes of that effect.

Apart from making explicit these limitations on the causal complexity which is
correctly discoverable by QC A, these considerations show that a methodology of
configurational causal reasoning that correctly models data stemming from chains
must avoid the one-difference restriction. An alternative methodology which does
not impose that restriction has been introduced in Baumgartner (2009a,b). It has
been termed Coincidence Analysis, or CN A for short. The next section reviews
the basic idea behind C'N A’s alternative minimization procedure.



3. THE BASICS OF COINCIDENCE ANALYSIS

Coincidence Analysis shares all of QC'A’s basic goals and intentions. It focuses on
configurational complexity rather than on net effects, it processes the same kind of
data as QC A, and it implements the same regularity theoretic notion of causation,
as e.g. developed by Mackie (1974). Apart from its altered minimization proce-
dure for sufficient and necessary conditions which will be presented below, there
is one difference between QC A and C'N A that deserves separate mention at this
point. Contrary to QC' A, C'N A does not presuppose that analyzed variables can
be classified into potential causes and a corresponding outcome prior to analyzing
the data. If such a classification is available, so much the better; if not, CN A
simply identifies and minimizes all relationships of sufficiency and necessity that
subsist among the relevant variables and issues a set of causal models that all entail
these sufficiency and necessity relations. It is then up to the researcher and her
background theories to choose among these possible models.

Accordingly, C'N A does not normally distinguish between conditions and out-
comes, rather it just speaks neutrally of factors. Factors are taken to be similar-
ity sets of event tokens, i.e. sets of type identical events or occurrences. When-
ever a member of such a similarity set occurs, the corresponding factor is said to
be instantiated. Moreover, to reflect the fact that causally interacting factors are
co-instantiated within the same spatiotemporal region, i.e. coincidently, configu-
rations of analyzed factors are termed coincidences in the C'N A-context rather
than cases—which explains the name “Coincidence Analysis”. All of these are
mere terminological differences. Nothing substantial hinges on them. Accord-
ingly, instead of “Coincidence Analysis” one might just as well speak of “Case
Analysis”—or even of “causal-chain-QC A” (ccQC A) for that matter; for, as will
be shown in the remainder of this paper, the one substantial difference between
CNA and QCA is that, contrary to the latter, the former can correctly process
data tables that violate (IND). More specifically, contrary to QC A, C N A does not
minimize relationships of sufficiency and necessity by means of Quine-McCluskey
optimization, but based on its own custom-built minimization procedure.

The basic idea behind this procedure can be easily stated. If there exists any
kind of (deterministic) causal dependency among n factors, it follows that not all
2™ logically possible configurations of these factors are also empirically possible.
Causal dependencies constrain the range of empirical possibilities. To do justice to
this trademark feature of causality, C /N A does not only infer causal dependencies
from the coincidences (or cases) actually contained in data tables, but also from the
coincidences not contained therein. In fact, evidence as to empirically impossible
coincidences is of central relevance for causal discovery. Claims about sufficiency
and necessity are logically equivalent to negative existential claims. For example,
to state that strong left parties are sufficient for welfare generosity is equivalent to
stating that there are no cases featuring strong left parties and a weak welfare state.
Analogously, claiming that strong left parties are necessary for welfare generos-
ity is equivalent to claiming that there are no cases featuring welfare generosity

10



without strong left parties. Negative existentials of this sort constitute the core of
CN A’s minimization procedure: to determine whether, say, a complex sufficient
condition Z1 75 ... Z,, of a factor Z,, contains redundancies or not, C' N A parses
a corresponding data table to check whether the table contains a row featuring a
proper part of that sufficient condition, say Z3 . .. Z,,, in combination with Z,, or
not. If the table does not contain such a such row, Z5 ... Z,, is itself sufficient
for Z,, i.e. Z1 is redundant. Next, Zs ... Z,, is likewise tested for further redun-
dancies, and so forth, until no more redundancies are found—and analogously for
necessary conditions.

To make all of this more precise, some notational and terminological prelim-
inaries are required. Factors are symbolized by italicized capital letters A, B, C,
etc., with variables (placeholders) Z, Z;, Z5, etc. running over the domain of fac-
tors. The negation of a factor A is written as before: A. Moreover, I introduce
variables X7, X», etc. that run over the domain of coincidences (configurations)
of an open number of factors. Causal analyses are always relativized to a set of
investigated factors. To this set I refer as the factor frame of the analysis. As in-
dicated above, C N A does not presuppose that a particular factor from the frame
can be identified as the outcome of an analyzed causal structure prior to applying
CN A. CN A simply identifies all relationships of sufficiency and necessity among
the factors in the frame and properly minimizes these relationships. In sociologi-
cal practice, however, it is often known from the outset which factors are possible
causes and which ones are possible effects. Accordingly, in addition to a data ta-
ble, C N A may be given a subset W of possible effects from the frame as input.
Sufficient and necessary conditions are then calculated for the members of W only.

C'N A then first identifies minimally sufficient conditions for each of the factors
in W. This is done in four steps: (i) a factor Z; € W is selected, (ii) all sufficient
conditions of Z; are identified, (iii) these sufficient conditions are minimized, and
(iv) the procedure is restarted at (i) by selecting another Z; € W, until all factors
in W have been selected. By referring to the other factors in the frame apart from
a selected Z; as residuals, the rule that identifies sufficient conditions of Z; in a
given input table C can be stated as follows:

(SUF) A coincidence X}, of residuals is sufficient for Z; if and only if C contains
at least one row featuring X Z; and no row featuring X w2

A complex sufficient condition X, of Z; contains no redundancies if and only
if X, contains no sufficient proper parts, i.e. if no elimination of a conjunct of X},
results in a condition that is itself sufficient for Z;. More precisely put:

(MSUF) A sufficient condition Z1 725 ... Zy of Z; is minimally sufficient if and
only if neither ZoZ5 ... Zy nor Z1Z5 ... Zpnor ... nor Z1Zs ... L1 are
sufficient for Z; according to (SUF).

To test whether a sufficient condition X} of Z; is minimally sufficient in the sense
defined by (MSUF), every factor in X, is to be tested for redundancy by elimi-
nating it from that condition and checking whether the remaining condition still is
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sufficient for Z;. A sufficient condition of Z; is minimally sufficient if and only if
every elimination of a factor from that condition results in the insufficiency of the
remaining condition. This can be more formally put as follows:

(MSUF’) Given a sufficient condition Z1Z5...Z;, of Z;, for every Z, €
{Z1,Z5,...,Zy}, h > g > 1, and every h-tuple (Zy/, Zo, ..., Zp)
which is a permutation of the h-tuple (Z1, Zs, ..., Z): Eliminate Z, from
Z1Zy ... Zy and check whether 27 ... Z; 1Zgy1 ... Z1,Z; is contained in
a row of C. If that is the case, re-add Z, to Z1...Zy_1Z441 ... Z}, and
eliminate Z,1; if that is not the case, proceed to eliminate Z,, without
re-adding Z,.

The core difference between minimizing sufficient conditions along the lines
of Quine-McCluskey optimization and of (MSUF’) deserves separate emphasis:
Quine-McCluskey optimization only eliminates conjuncts of a sufficient condition
if the latter reduced by a respective conjunct is actually contained in the data table
in a way that satisfies the one-difference restriction; by contrast, (MSUF’) elimi-
nates conjuncts of a sufficient condition if the latter reduced by a respective con-
junct is not contained in the data in combination with the absence of a correspond-
ing effect.

To illustrate C'N A’s minimization of sufficient conditions, reconsider table 1.
For simplicity, assume that our theoretical background—as in case of the exem-
plary QC A analysis of table 1 conducted in section 2—determines G to be the only
conceivable effect among the three factors contained in that table, i.e. W = {G}.
Rows c1, ¢2, and c3 each feature a sufficient condition of G according to (SUF): For
UL, UL, and UL table 1 contains one row featuring ULG, ULG, and ULG, re-
spectively, and no row in which those conditions are combined with G. Moreover,
no row in table 1 exhibits either U or L in combination with G. That is, both U
and L are themselves sufficient for G. As neither of them has further proper parts,
U and L are each minimally sufficient for G. Analogous considerations reveal that
UL is minimally sufficient for G in table 1. Row ¢4 exhibits the coincidence U LG
and for each proper part of UL there is a row featuring that part in combination
with the absence of G, viz. UG in c3 and LG in cp. Accordingly, none of the
proper parts of UL is itself sufficient for G.

Next, C N A disjunctively combines minimally sufficient conditions of each
Z; € W to necessary conditions of Z;. Necessity of a disjunction of conditions
relative to a given input table C is defined as follows:

(NEC) A disjunction X7 V X5 V...V X} of minimally sufficient conditions of Z;
is necessary for Z; if and only if C contains no row featuring Z; in combi-
nation with =(X;V X V...V X}), i.e. no row comprising X1 X5 ... XpZ;.

Finally, if C'N A finds necessary conditions of Z; € W, it proceeds to minimize
those conditions analogously to (MSUF) and (MSUF’).
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(MNEC) A necessary condition X V X3 V...V X}, of Z; is minimally necessary
if and only if neither Xo V X5V ...V Xy nor X3V X3V ...V Xy nor...
nor X7V Xo V...V X} is necessary for Z; according to (NEC).

To determine whether a necessary condition X7V Xo V...V X}, of Z; is minimally
necessary in the sense defined by (MNEC), every disjunct contained in X7 V Xa V
...V X}, is to be tested for redundancy by eliminating it from that disjunction and
checking whether the remaining condition still is necessary for Z;. A necessary
condition of Z; is minimally necessary if and only if every elimination of a disjunct
results in the loss of necessity of the remaining condition. More formally and
operationally put:

(MNEC’) Given a necessary condition X V Xo V...V X}, of Z;, for every X,
€ {Xy,Xo,...,Xp}, h > g > 1, and every h-tuple (X7, Xor, ..., Xps)
which is a permutation of the h-tuple (X1, Xo,...,X}): Eliminate X,
from X1 V Xo V...V X} and check whether there is a row in C featuring
Z; in combination with =(X; V...V Xg-1VXgp1 V...V Xy), ie arow
comprising X1 ... Xy 1Xg41... XpZ;. If that is the case, re-add X, to
X1V...VX, 1V Xgp1 V...V X}, and eliminate X, 1; if that is not the
case, proceed to eliminate X, 1 without re-adding X,.

To illustrate, let us again apply these rules to table 1. Above, we saw that U and
L are each minimally sufficient for G and that UL is minimally sufficient for G.
As it turns out, the disjunctive concatenation of U and L, viz. U V L, accounts for
all occurrences of G in table 1. Thatis, U V L is necessary for Gi. Analogously, UL
accounts for all occurrences of G in this table, i.e. UL is necessary for G. More-
over, neither U nor L are themselves necessary for G, because for both of them
there is a row where they are absent while G is given: c3 features the coincidence
UG and ¢ the coincidence LG. Therefore, U V L is minimally necessary for G.
Finally, as U L has no necessary proper parts either, it is minimally necessary for
G. Allin all, C' N A produces the following solution formulas for table 1:

UVL&G ; UL-G (5)

It can easily be seen that this solution is the same as the solution assigned to ta-
ble 1 by QC'A, i.e. (1). While QC A only eliminates redundant elements from suf-
ficient and necessary conditions if the one-difference restriction is satisfied, CN A
systematically tests for eliminability, independently of whether the one-difference
restriction is satisfied or not. Yet, evidently, if a data table features all 2" config-
urations of n residuals of some Z; € W, as does table 1 for the residuals of G,
QC A can perform the same systematic redundancy testing which C N A performs
independently of the availability of all those logically possible configurations. Con-
sequently, if the data exhibit all 2" configurations of n residuals, CN A and QC A
produce the exact same solution formulas. The two methodologies are equivalent
for all data tables that are logically complete in this sense. As the next section is go-
ing to show, though, important differences emerge if input tables are not logically
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complete with respect to residuals of some Z; € W and the theoretical background
of the researcher has it that there might exist causal dependencies among residuals.

4. CNA AND CAUSAL CHAINS

In order to have a concrete background against which to discuss how C'N A pro-
cesses data that are generated by causal chains, let us return to table 2. Assume,
a hypothetical study on the causal dependencies among strong unions (U), strong
left parties (L), and welfare generosity (G) has generated table 2; and assume
furthermore that this data in fact is the result of the causal chain depicted in fig-
ure 1. In consequence, table 2 lists all empirically possible combinations of the
three factors U, L, and GG. Or differently, table 2 is not limited in its diversity,
even though it does not contain coincidences featuring strong unions and weak left
parties. Adding counterfactual coincidences to this table would hence violate the
underlying causal structure.

As we have seen in section 2, the only QQC A-strategy that does not add coun-
terfactual cases to table 2, strategy Sy, does not succeed in recognizing the depen-
dencies between U and L and between U and G as being of causal nature. Let us
now apply C'N A to that table. Available prior causal knowledge yields that welfare
generosity must be the ultimate outcome of the causal structure we are looking for.
We have enough evidence indicating that countries install generous welfare sys-
tems only (temporally) after unions or left parties have gained sufficient strength.
However, suppose we have no theoretical knowledge about the causal interplay be-
tween the strength of unions and the strength of left parties. On the face of it, there
may exist any kind of causal relationship between these two factors. In light of this,
C'N A is brought to bear in such a way that, first, it identifies sufficient and neces-
sary conditions for all factors in the frame and, second, the researcher selects those
relationships of sufficiency and necessity that can be causally interpreted relative
to the available theoretical background.

We thus start by setting the set W of potential effects equal to the factor frame,
i.e. W= {U, L, G}, such that C' N A identifies minimally sufficient and necessary
conditions for all factors in the frame. For simplicity, we abstain from also iden-
tifying sufficiency and necessity relations for the absences of U, L, and G. Rows
c1 and ¢y of table 2 each feature a sufficient condition of G according to (SUF):
For both UL and U L the table contains one row featuring U LG and U LG, respec-
tively, and no row in which those conditions are combined with G. Moreover, no
row in table 2 exhibits either U or L in combination with G. That is, both U and L
are themselves sufficient for G. As neither of them has proper parts, U and L are
each minimally sufficient for G according to (MSUF). Very analogous considera-
tions reveal that U and G are each minimally sufficient for L in table 2. However,
as instances of G generally occur temporally after instances of L, a causal inter-
pretation of the sufficiency of G for L can be excluded to begin with. Finally,
there are no sufficient conditions of U in table 2. The coincidence LG is combined

14



with U in ¢; and with U in ¢o, and is therefore not sufficient for U according to
(SUF). Overall, the first stage of our C'N A-analysis of table 2 yields the following
causally interpretable minimally sufficient conditions of the members of W:

G: {UL}
L: {U}
U: {}

C'N A then proceeds to build necessary conditions of the members of W from
this inventory of their minimally sufficient conditions. The disjunction U V L is
necessary for GG according to (NEC), for there is no row in table 2 exhibiting the
coincidence ULG. Moreover, U V L has a necessary proper part: There is no
row featuring L in combination with G. That is, as to (MNEC) L is minimally
necessary for G. By contrast, the one minimally sufficient condition of L that is
amenable to a causal interpretation, i.e. U, is not necessary for L. In row ca, L is
instantiated without U. That shows that L has causes that are not contained in the
frame of our exemplary study. As there are no minimally sufficient conditions of
U in table 2, CN A does not build any necessary conditions of U either.> Over-
all, C N A hence finds one causally interpretable minimally necessary condition
composed of minimally sufficient conditions for G, i.e. L, and one causally inter-
pretable minimally sufficient condition of L, i.e. U. In the final solution formula,
C' N A conjunctively concatenates its findings:

(U—-LYAN(L+G) (6)

(6) mirrors exactly the sufficiency and necessity relations that follow from the
causal chain in figure 1. Moreover, (6) generates exactly the truth table 2, that is,
(6) is true if and only if U, L, and G are assigned one of the configurations of truth
values listed in table 2. Contrary to QC' A, C'N A does not eliminate the depen-
dency between U and L, but recognizes it as being of causal nature. By allowing
for more than one outcome and by systematically testing sufficient and necessary
conditions for redundancies, independently of whether the one-difference restric-
tion is satisfied, C'N A succeeds in adequately modeling the data in table 2 in terms
of the causal chain in figure 1.

It must be emphasized that C N A’s assignment of (6) to table 2 essentially
hinges on the presumed empirical completeness of that table. If a researcher is sim-
ply confronted with a table as 2, she cannot be sure that the absence of countries
with strong unions and weak left parties from the data is due to a causal depen-
dence between these factors. The fact that this configuration is missing from the
data might also be the result of an accidental limitation of data diversity. Plainly,
configurational data themselves do not shed any light whatsoever on why certain
configurations are not contained therein. Explanations for missing data points must
come from external sources—in the first instance, from the researcher’s theoretical
background. If available background knowledge about the interplay between the
strength of unions and of left parties suggests that the combination of strong unions
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and weak left parties is empirically possible after all, a C'N A-analysis has to revert
to counterfactual completions of data tables along the lines of strategies Ss and S
sketched in section 2. As we have seen in section 3, since C'N A is equivalent to
QC A with respect to logically complete tables, C'N A generates the same solution
formulas as strategies Sz and S3, depending on whether table 2 is counterfactually
completed in terms of tables 3a or 3b.

While in experimental disciplines researchers could freely manipulate inves-
tigated factors and, thus, test whether missing configurations can be artificially
produced or not, assessing the empirical completeness of configurational data may
give rise to severe problems in non-experimental disciplines—for example, if the
theoretical background is indeterminate as to whether the combination of strong
unions and weak left parties is compatible with the underlying causal structure
or not. Deciding whether missing configurations are due to accidental diversity
limitations or to causal dependencies constitutes one of the trademark problems
of causal reasoning in non-experimental disciplines. Nonetheless, this problem of
data completeness has received far less attention in the literature on configurational
causal reasoning than the problem of limited diversity.

I have deliberately chosen very simple data tables here to focus on the compu-
tational differences between QC'A and C'N A. In more complex cases, of course,
data tables typically feature a host of logical remainders. Realistically, only a sub-
set of all remainders will stem from causal dependencies among residuals. One of
the central upshots of this paper is that supplementing counterfactual cases along
the lines of strategies Sy and S3 is only warranted for those factors that are deter-
mined to be independent by the theoretical background, i.e. for those configura-
tions of residuals that are determined to be empirically possible. The first step in
the causal analysis of small- and intermediate-/NV data always has to be to consult
the available theoretical background in order to counterfactually supplement those
conditions that are missing from the data due to mere contingencies of data collec-
tion. Procedures of Boolean causal reasoning can only be brought to bear after an
exhaustive collection of data. In this regard, the computational difference between
QCA and C'N A entails another important difference between the two methods:
CN A is more liberal than QC'A with respect to what can count as an exhaus-
tive collection of configurational data. While QQC' A requires 2" combinations of n
conditions for proper minimizations of solution formulas, C'N A can properly min-
imize any number of combinations smaller than 2. C'N A can process data that
stem from causal structures involving both multiple effects and mutually dependent
causes. Contrary to QC' A, C'N A does not need to assume (IND). If (IND) does not
hold, sufficient and necessary conditions must not be minimized along the lines of
Quine-McCluskey optimization, but along the lines of (MSUF’) and (MNEC”).

Generally, configurational data greatly underdetermine their own causal anal-
ysis. Such data do not themselves distinguish between conditions and outcomes
and they do not wear their own completeness on their sleeves. In non-experimental
disciplines, the distinction between conditions and outcomes or the completeness
of relevant data must be determined by non-configurational information, most no-
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tably, by the available theoretical background. Without such additional informa-
tion, the causal analysis of configurational data is inevitably ambiguous. The more
theoretical guidance is available, the more modeling ambiguities can be resolved.
As indicated in section 3, C' N A aims to make all causal models explicit that fit
the data relative to any given theoretical background. While QC A can only be ap-
plied if a single factor is identifiable as outcome and the remaining conditions are
determined to be causally independent, C'IN A is applicable even without any such
theoretical guidance. Clearly though, without such guidance the set of possible
models assigned to a data table by C' N A will commonly be rather large. But that
is just what we should expect from a method of causal inference: if the data and
the background theories underdetermine causal modeling, an inference procedure
must bring all data-fitting models on the table, independently of the number of the
resulting model candidates.

Notes

'Instead of this logical or truth-functional terminology the QC A literature often draws on a set-
theoretical vocabulary. That is, instead of sufficient conditions QC A is said to detect subset relations,
or instead of the conjunction of two conditions authors talk of the intersection of two sets. These
two terminologies are entirely equivalent. For mere reasons of taste I consistently use the logical
terminology in this paper. Explicit translations between the two terminologies can be found in Goertz
(2003).

“Caren and Panofsky (2005) have generalized QC A for temporally ordered conditions (TQC A).
Even though Caren and Panofsky are not very explicit about whether they take temporal order among
conditions to indicate causal dependencies, TQC A clearly still relies on Quine-McCluskey op-
timization (cf. Caren and Panofsky 2005, 156) and, hence, yields incorrect solution formulas for
chain-generated data.

3Even though both L and G are necessary for U in table 2, C'N A does not causally interpret these
dependencies. While causes are sometimes necessary for their effects, effects are always necessary
for their causes, for when no effects occur, no causes occur either. Therefore, if a factor Z; is neces-
sary for another factor Z», additional evidence is needed to establish that the direction of causation
is from Z; to Z> and not the other way around. While QCA simply presupposes a causal order,
CN A identifies the direction of causation via relationships of sufficiency. Without corresponding
sufficiency relationships C'N A abstains from causally interpreting relationships of necessity. For
details cf. Baumgartner (2009a).
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