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Abstract: There is a growing number of studies benchmarking the performance of Configurational Com-
parative Methods (CCMs) of causal data analysis. A core benchmark criterion used in these studies is a
dichotomous (i.e., non-quantitative) correctness criterion, which measures whether all causal claims en-
tailed by a model are true of the data-generating causal structure or not. To date, Arel-Bundock [1] is
the only one who has proposed a measure quantifying correctness. That measure, however, as this paper
argues, is problematic because it tends to overcount errors in models. Moreover, we show that all available
correctness measures are unsuited to assess relations of indirect causation. We therefore introduce a new
correctness measure that adequately quantifies errors and does justice to indirect causation. We also offer a
new completeness measure quantifying the informativeness of CCM models. Together, these new measures
broaden and sharpen the resources for CCM benchmarking.
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1 Introduction
Configurational Comparative Methods (CCMs) constitute a family of methods of causal learning that track
causal complexity by grouping multiple causes into bundles (conjunctions) that only become operative
when all of their components are properly co-instantiated and by placing these bundles on alternative
(disjunctive) causal paths that can bring about corresponding outcomes independently of one another.
CCMs are custom-built to deal with causal structures featuring complex interactions, threshold effects,
equifinality, or component causation, which tend to pose challenges for standard methods (e.g. Bayes nets
methods or regression methods) because these structures often violate linearity and feature causes and
effects that are not correlated in the data, giving rise to violations of causal faithfulness [2]. To this end,
CCMs trace causation as defined by modern regularity theories of causation—which define causation in
terms of Boolean difference-making and, unlike most other theories, do not entail that pairwise correlation
is necessary for causation (cf. [3, 4]).

The two main members of the CCM family are Qualitative Comparative Analysis (QCA; [5, 6]) and
Coincidence Analysis (CNA; [7, 8]). They differ in various aspects, for example, in search targets and
implemented algorithms, or in domains of applicability (see [9]). While QCA has been widely used in the
social and political sciences, in business administration, or in management, CNA has seen a signifiant
uptick in applications in public health in recent years.

Accompanying the increasing dispersion of CCMs, there is a growing body of literature benchmarking
the performance of QCA and CNA (e.g. [1, 9–16]). These benchmarking studies conduct inverse searches
by, first, (randomly) building data-generating structures—ground truths—, second, simulating data from
those structures featuring various deficiencies such as noise or fragmentation, and third, processing the data
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with CCMs to measure the degree to which the produced outputs comply with different quality criteria.
One such criterion used in many studies (but not all, cf. [12]) is a dichotomous correctness criterion, which
classifies a model as correct if all of its causal implications correspond to causal properties of the ground
truth, meaning if it is a submodel of the ground truth, and as incorrect otherwise [11]. That is, a correct
model is a model that does not commit a false positive error. But CCM models may have numerous causal
implications: they can identify an array of causes, group these causes conjunctively and disjunctively, and
they may feature multiple outcomes, for each of which they exhibit disjunctions of conjunctions of causes.
Accordingly, only checking whether a model is a submodel of the ground truth amounts to a coarse-grained
benchmark. Models that are not submodels of the ground truth can be further compared with respect
to how many false implications they have. After all, a model with many true implications and one false
positive error is still preferable over a model with many such errors. Hence, measuring correctness not just
dichotomously but quantitatively is a natural further development of CCM benchmarking.

However, as this paper will show, adequately quantifying errors in CCM models is an intricate problem.
The only solution proposed so far is Arel-Bundock’s [1] wrongness measure, which counts implications of
a model in terms of the number of its submodels and then quantifies wrongness as the proportion of its
submodels that are not also submodels of the ground truth. In the first part of this paper, we will argue
that this approach is inadequate because it tends to disproportionally overcount errors. In addition, it will
be shown that the notion of a submodel, which is at the heart of much of CCM benchmarking to date, is
only suited to assess the correctness of models exclusively making claims about relations of direct causation,
but it cannot handle models expressing indirect causation. In consequence, both the standard dichotomous
correctness measure and Arel-Bundock’s wrongness measure are prone to misjudge the quality of CCM
models when the ground truth is a causal chain.

The second part of the paper sets out to rectify these shortcomings. In general terms, correctness of a
model relative to a ground truth is the ratio of causal information contained in the model that is true of the
ground truth. The problems of overcounting errors and of indirect causation show that sets of submodels
do not adequately measure that information content. As an alternative, we introduce the notion of a causal
exposition, which, in a nutshell, refers to a list of all types of all causal ascriptions, including ascriptions
of direct and indirect relevance, made by models and ground truths. These causal expositions can then
be intersected and the correctness of the model quantified in terms of the ratio of the complexity of these
intersections to the complexity of the model’s causal exposition.

Correctness is not the only quality measure, as it exclusively rewards error avoidance and is insensi-
tive to a model’s informativeness. Benchmarking studies—in many methodological traditions—, therefore,
complement correctness (a.k.a. precision) by a completeness (a.k.a. recall) criterion measuring how much
of the ground truth is revealed by a model, that is, how informative a model is [17–20]. In CCM bench-
marking, different completeness criteria are in use, some dichotomous, some quantitative [1, 10, 11, 15].
But they typically rely on the notion of a submodel that gives rise to problems when the ground truth
is a causal chain. For that reason, we complement our new correctness criterion by an analogous new
completeness criterion, which quantifies completeness with exclusive recourse to the tools developed in this
paper. To quantify a model’s overall quality, we then aggregate its correctness and completeness using the
Fβ-measure, which is standard in classification theory and machine learning [17]. All new measures and
tests are implemented as explicit R functions, which are available in the paper’s supplementary material,
which moreover provides a script that allows for replicating all calculations of the article.

2 The basics of CCMs
To learn structures featuring causal complexity from data, CCMs draw on the so-called (M)INUS theory
of causation [3, 4, 21], which is especially suited for the analysis of complexity dimensions that give rise to
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linearity and faithfulness violations.1 Contrary to most other theories of causation, the (M)INUS theory
does not define causation with recourse to a pairwise dependence between causes and effects. Rather, it
defines the relation of causal relevance (i.e., type-level causation) between a factor A taking some value
α, A=α, and a factor B taking a value β, B=β, in terms of A=α being a Boolean difference-maker of
B=β, which, roughly put, amounts to A=α being part of a complex but redundancy-free Boolean function
accounting for B=β [3].

Factors in such Boolean functions can either be crisp-set (binary), taking two possible values 0 and 1,
fuzzy-set, taking real values from the unit interval [0, 1], or multi-value, taking an open (but finite) number
of non-negative integers as possible values. For simplicity, we subsequently focus on crisp-set factors, which
allows for abbreviating the “Factor=value” notation. As is conventional in Boolean algebra, we will use
“A” as shorthand for A=1 and “a” for A=0.2 The (M)INUS theory borrows much of its formal machinery
from Boolean algebra, in particular, the operations of negation, ¬A (expressing “not A=1”), conjunction,
A∗B (“A=1 and B=1”), disjunction, A + B (“A=1 or B=1”), implication, A → B (“ if A=1, then B=1”),
and equivalence A ↔ B (“A=1 if, and only if, B=1”).3 In case of crisp-set (and multi-value) factors,
Boolean operations are given a rendering in classical logic, which we do not reiterate here (see e.g. [23]
for a canonical introduction). Based on the implication operator the notions of sufficiency and necessity
are defined, which are the two core dependence relations exploited by the (M)INUS theory: a conjunction
A∗C∗E, for example, is sufficient for B iff (i.e., if, and only if) A∗C∗E → B (i.e., whenever A and C and E

are true, B is true); and a disjunction A + C + E is necessary for B iff B → A + C + E (i.e., whenever B

is true, A or C or E is true).
Most sufficiency and necessity relations do not reflect causation, but some of them do, namely the

ones that are rigorously freed of redundancies. As shown by Baumgartner and Falk [3], there exists a
tight connection between difference-making and redundancy-freeness: A is a Boolean difference-maker of
B iff A is a non-redundant part of a minimally sufficient condition Φ1 (e.g., A∗Z1∗ . . . ∗Zn) of B, such
that Φ1, in turn, is a non-redundant part of a minimally necessary condition Φ1 + Φ2 + . . . + Φn of B—
where sufficient and necessary conditions are said to be minimal iff they do not have proper parts that
are, respectively, sufficient and necessary on their own. Correspondingly, CCMs infer minimally necessary
disjunctions of minimally sufficient conditions of scrutinized outcomes in disjunctive normal form (DNF),4

so-called atomic MINUS-formulas, from data, which represent causal structures with one outcome. Such
one-outcome structures can then be combined to complex MINUS-formulas representing multi-outcome
structures.5 (1) is an atomic and (2) a complex exemplar:

A∗b + c∗D ↔ E (1)
(H∗K + I ↔ A) ∗ (A∗b + c∗D ↔ E) (2)

When causally interpreted, (1) entails that A and b jointly cause E on one path and that c and D jointly
cause E on another path. The same also follows from a causal interpretation of (2), but (2) additionally
entails that H∗K and I are two alternative direct causes of A, making them indirect causes of E.

Of course, as deterministic dependencies are rare in (messy) real-life data, strictly sufficient and nec-
essary conditions for an outcome often do not exist. In order to nonetheless distill causal information from

1 The acronym “INUS” refers to Insufficient but Non-redundant parts of Unnecessary but Sufficient conditions [4, p.
62]. As there are more elegant ways to capture the idea expressed by that expansion, “INUS” is often used as a mere
name for a theoretical framework today—void of its original meaning. Accordingly, “MINUS” is a name, without an
expansion, locating the corresponding theory in the INUS tradition.
2 Note that italicization carries meaning: “A” designates the factor and “A” stands for A taking the value 1.
3 The symbols “∗” and “+” are used as in Boolean algebra here, which means, in particular, that they do not represent
the linear algebraic (arithmetic) operations of multiplication and addition (notational variants of Boolean “∗” and “+”
are “∧” and “∨”). For a standard introduction to Boolean algebra see [22].
4 An expression is in disjunctive normal form iff it is a disjunction of one or more conjunctions of one or more factor
values [22, p. 13]
5 Combining atomic to complex MINUS-formulas requires extra redundancy elimination, which makes it computation-
ally demanding (see [3]). Only CNA builds complex MINUS-formulas.
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such data, CCMs approximate deterministic dependency structures by suitably fitting their models to the
data. The two core fit measures used for that purpose are consistency and coverage (for formal definitions,
see [24]).6 Consistency measures the degree to which the behavior of an outcome obeys a corresponding
sufficiency or necessity relationship or a whole model; coverage measures the degree to which a sufficiency
or necessity relationship or a whole model accounts for the behavior of the corresponding outcome. What
counts as acceptable scores on these fit parameters (with values in the unit interval) is defined in thresh-
olds that can either be set by the analyst prior to the analysis or chosen through the robustness protocol
recently introduced by Parkkinen and Baumgartner [15]. They determine how closely a dependence in the
data must approximate the deterministic ideal in order to pass as one of sufficiency or necessity.

Given their embedding in the (M)INUS theory, CCMs—unlike standard methods—do not infer their
outputs from associations (e.g., effect sizes) observed in the data as a whole, rather they exploit difference-
making evidence at the level of individual cases (units of observations) in the data. For example, if two
cases σi and σj coincide in all measured factors except for A and B, such that σi features A and B and σj

features a and b, this is evidence—assuming the homogeneity of the unmeasured causal background (for
details, see [8])—that there exists a context, viz. the one of σi and σj , in which A makes a difference to B.
It follows that A must be part of some conjunction causally relevant for B.

In order to establish, along these lines, that A and C jointly or alternatively cause B, all four logically
possible configurations of A and C, namely A∗C, A∗c, a∗C, and a∗c, must be observed in combination with
corresponding values of B. In general, the amount of different configurations needed to unambiguously
group causes conjunctively or disjunctively increases exponentially with the number of exogenous factors
in the analysis. It follows that unambiguously and completely uncovering causal structures by means of
CCMs poses very high demands on data diversity; ideally, the behavior patterns of outcomes are observed
under all logically possible configurations of exogenous factors. But CCMs are often applied in discovery
contexts where such high data diversity is not given. Hence, as CCMs are designed to find all models that
equally fit the data, CCM analyses tend to be affected by model ambiguity, meaning that they generate
more than one model. Moreover, these models typically are incomplete, that is, they only represent proper
parts of data-generating structures.

This has ramifications for the interpretation of CCM models. First, if multiple models m1 to mn are
inferred from data, the latter underdetermine their own causal modeling, that is, based on the evidence
in the data alone, all of m1 to mn are equally good candidates for being truthful representations of the
data-generating structure. Therefore, a CCM output consisting of multiple models is to be interpreted
disjunctively: m1 or m2 or . . . or mn is true; but the data are insufficient to determine which one(s)
exactly.

Second, a model as (1), inferred from data, must be interpreted to be open for later expansions, that
is, it must be read with implicit placeholders for additional conjuncts Xi, disjuncts Yi, and other CCM
models Ψi [4, see p. 66]:

(A∗b∗X1 + c∗D∗X2 + Y1 ↔ E) ∗ (Ψ1) (3)

So the fact that, say, G does not appear in model (1) does not entail that G is causally irrelevant to E; it
merely means that the data from which (1) was inferred do not contain evidence for the causal relevance
of G. By contrast, (1) is committed to all its ascriptions of causal relevance as well as all its ascriptions of
conjunctive and disjunctive grouping being true of the complete causal structure regulating the behavior of
E—whichever that might be. In other words, the set of causal ascriptions made by a model inferred from
data shall be a subset of the causal ascriptions made by the model representing the complete ground truth.
In an attempt to define a precise criterion determining when such a subset relation obtains, Baumgartner
and Thiem [11] introduced the notion of a submodel (we generalize the original definition here):

6 Consistency is the ratio of true positives to the sum of true and false positives; it is called positive predictive value
in confusion matrix terminology. Coverage is the ratio of true positives to the sum of true positives and false negatives;
it corresponds to sensitivity in the confusion matrix.
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Submodel. A CCM model mi is a submodel of another CCM model mj iff
(i) if mi is an atomic MINUS-formula Ω ↔ Z, there exists an atomic MINUS-formula Γ ↔ Z in

mj such that either Γ = Ω or Γ can be transformed into Ω by mere elimination of conjuncts or
disjuncts;

(ii) if mi is a complex MINUS-formula, all atomic MINUS-formulas in mi have counterparts in mj

for which (i) is satisfied.

For example, A∗B ↔ C is a submodel of A∗B∗D ↔ C and of A∗B +D ↔ C because A∗B∗D and A∗B +D

can be transformed into A∗B merely by eliminating conjuncts or disjuncts, but not of A + B ↔ C because
A + B cannot be transformed into A∗B in that way.

If mi is a submodel of mj , mj is called a supermodel of mi. The submodel relation is reflexive: every
model is a submodel (and supermodel) of itself. Put differently, if mi and mj are submodels of one another,
then mi and mj are identical. Although the submodel relation, strictly speaking, can only be said to obtain
between CCM models, we will subsequently also say, for convenience, that a model mi is a submodel of
the ground truth (instead of mi being a submodel of the model representing the ground truth).

3 Assessing model quality by submodel criteria

3.1 The state-of-the-art in CCM benchmarking

Even though the output a CCM infers from limitedly diverse data often contains more than one model
and even though these models cannot be expected to reflect the complete ground truth, the output as a
whole can and should be expected to truthfully reflect the data-generating structure. This is satisfied if at
least one output model mi is a submodel of the model representing the complete ground truth. Against
that backdrop, the following is a qualitative correctness criterion frequently used in CCM benchmarking
[see e.g. 8–11, 15, 16]:7

Qualitative Correctness (LCR). A model m is a correct representation of a ground truth ∆ iff m is a
submodel of ∆.

While being important in current CCM benchmarking, (LCR) is clearly insufficient to assess the overall
quality of models. For one, (LCR) does not take model complexity or informativeness into account. Models
can be very sparse or very complex submodels of the ground truth, yet equally satisfy (LCR). Hence,
correctness needs to be complemented by a completeness criterion suitably rewarding informativeness.8

There are various completeness criteria on offer, some qualitative [8], some quantitative [1, 10, 15, 16], but
they all measure completeness by drawing on the submodel relation.

Another reason why (LCR) does not suffice for assessing model quality is that it is merely qualitative,
meaning it can only be passed or not. As a result, (LCR) cannot capture important differences. To illustrate,
let ∆1 be the ground truth and let models (4) and (5) be inferred from data simulated from that ground

7 Dusa [12] rejects this criterion and, instead, requires disjuncts in a model m to be complete in order for m to count
as correct. We take Dusa’s position to entail that hardly any CCM models of real-world systems can be correct and,
hence, do not discuss it further here (see [25] for a detailed discussion of Dusa’s proposal).
8 Dusa [12] does not conceive of correctness and completeness as independent quality measures. In our view, however,
clearly distinguishing between correctness and completeness is crucial for a balanced assessment of model quality. It
allows for rewarding models for the true claims they make independently of punishing them for the true claims they
fail to make, and it is commonplace in method benchmarking across a wide range of fields (where correctness is often
called precision and completeness is known as recall).



6 Michael Baumgartner and Christoph Falk, Quantifying the Quality of Configurational Causal Models

truth in a benchmark test:

A∗b + c∗D ↔ E (∆1)
A∗B + D ↔ E (4)

A∗B∗D ↔ E (5)

As neither (4) nor (5) are submodels of ∆1, they are both incorrect according to (LCR). But there is
a clear sense in which (4) is not equally incorrect as (5). While (4) correctly entails that A and D are
causally relevant and places these causes in alternative disjuncts, it erroneously ascribes causal relevance
to B (instead of b). (5) makes that same mistake and, in addition, erroneously combines D conjunctively
with A. That is, (5) commits one error more than (4). It should count as a worse representation of ∆1
than (4). However, (LCR), being a mere qualitative criterion, is insensitive to such differences in numbers
of errors.

To date, Arel-Bundock [1] is the only one who has proposed a measure that is sensitive to such
differences by expressing correctness quantitatively. Strictly speaking, Arel-Bundock does not define a
measure for model correctness but for model wrongness: “I measure the level of wrongness by counting the
proportion of solution submodels that are not submodels of the truth” [1, p. 7]. But to adjust this proposal
to our preferred terminology (which is also standard in the benchmarking literature) we transform Arel-
Bundock’s wrongness measure into a quantitative correctness measure (by negating it):

Quantitative Correctness (NCR). The correctness of a model m for a ground truth ∆ is the proportion
of m’s submodels that are also submodels of ∆.

To illustrate, we apply (NCR) to models (4) and (5). Table 1 lists all submodels of (4) and (5), respectively,
and indicates whether they are submodels of the ground truth ∆1. Three of the seven submodels of (4)
are also submodels of ∆1, yielding a (NCR)-score of 0.43. With only two of its seven submodels being
submodels of ∆1, (5) gets a (NCR)-score of 0.29. That these scores are below 1 and above 0 reflects the
fact that neither (4) nor (5) are fully correct representations of ∆1 while still making some true claims.
Furthermore, (4) receives a higher score than (5) because it makes less errors. On the face of it, (NCR)
thus seems to capture exactly those differences that (LCR) is insensitive to. However, the next two sections
will show that (NCR) does not adequately score model correctness in all cases.

A∗B +D ↔ E sub(∆1) A∗B∗D ↔ E sub(∆1)

A ↔ E ! A ↔ E !

B ↔ E % B ↔ E %

D ↔ E ! D ↔ E !

A∗B ↔ E % A∗B ↔ E %

A+D ↔ E ! A∗D ↔ E %

B +D ↔ E % B∗D ↔ E %

A∗B +D ↔ E % A∗B∗D ↔ E %

3/7 = 0.43 2/7 = 0.29

Table 1. All submodels of models (4) and (5), respectively, with marks indicating whether a submodel is also a submodel
of the ground truth ∆1 and resulting (NCR)-scores.



Michael Baumgartner and Christoph Falk, Quantifying the Quality of Configurational Causal Models 7

3.2 The problem of overcounting errors

The first problem of (NCR) is best introduced with another concrete example. Thus, let ∆2 be the ground
truth and let models (6) to (8) be inferred from data simulated from ∆2:

A∗b∗D∗F + a∗B∗C∗D ↔ E (∆2)
A + C + D ↔ E (6)

A∗b + C + D ↔ E (7)
A∗b∗F + C + D ↔ E (8)

The important feature of candidate models (6) to (8) is that they all contain the same error: instead of
adding D to the first or second disjunct, they place D into a third disjunct, thus, claiming that D brings
about E independently of the other factors. Apart from that mistake, all other causal claims entailed by
(6) to (8) are true of ∆2. More specifically, the difference between (6) and (7) is that the latter truthfully
identifies A∗b as a cause of E, while in the former b is not part of the first disjunct. That is, (7) makes the
same mistake as (6) and contains more true information. Analogously, (8) features the same error as (7)
(and (6)) in combination with the true conjunctive addition of F to A∗b.

Clearly, an adequate correctness measure must not punish models (7) and (8) for containing more true
elements than (6) while committing the same error as (6). More generally, an adequate correctness measure
should respect the following model expansion principle:

Model Expansion Principle (MEP). Expanding a model by truthfully located elements from the
ground truth cannot reduce correctness.

(NCR), however, does not respect (MEP). It assigns the highest correctness score to (6) and the lowest
to (8). Model (6) has a total of seven submodels, six of which are also submodels of ∆2, yielding an
(NCR)-score of 6/7 = 0.86, whereas (7) and (8) only reach (NCR)-scores of 12/15 = 0.80 and 24/31 = 0.77,
respectively.9 The reason for this inadequate scoring, in a nutshell, is that (NCR) counts both true and false
claims made by models multiple times, in a possibly disproportional manner, which leads to an overcounting
of false claims, that is, of errors in case of models (7) and (8).

To bring this out more clearly, we take a closer look at (7). Table 2 lists all of (7)’s 15 submodels.
The truthful submodels, that is, the ones that are submodels of ∆2, are in the left half of the table, the

# A∗b+ C +D ↔ E sub(6) sub∆2 # A∗b+ C +D ↔ E sub(6) sub∆2

sm1 A ↔ E ! ! sm13 A+ C +D ↔ E ! %

sm2 C ↔ E ! ! sm14 b+ C +D ↔ E % %

sm3 D ↔ E ! ! sm15 A∗b+ C +D ↔ E % %

sm4 A+ C ↔ E ! !

sm5 A+D ↔ E ! !

sm6 C +D ↔ E ! !

sm7 b ↔ E % !

sm8 A∗b ↔ E % !

sm9 b+ C ↔ E % !

sm10 b+D ↔ E % !

sm11 A∗b+ C ↔ E % !

sm12 A∗b+D ↔ E % !

Table 2. The 15 submodels of (7) with indications of whether they are submodels of (6) and ∆2 as well.

9 To see all relevant submodels, consult the paper’s replication script at https://github.com/m-baum/quantifyQuality.

https://github.com/m-baum/quantifyQuality
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false ones in the right. For each submodel, the table moreover indicates whether it is also a submodel of
(6). The first thing to highlight is the tendency of (NCR) to count false and true claims made by (7) and
its submodels multiple times. For instance, according to ∆2 it is false to say, as does sm15, that C and
D are parts of alternative causes of E, rather they are causally relevant in conjunction. This entails that
submodels sm13 and sm14 are also false, as they result from sm15 by mere elimination of a conjunct. The
error contained in sm13 and sm14 is the same as the error in sm15. Analogously, given that sm11 is a
submodel of ∆2, and thus only makes true causal claims, it follows that all submodels of sm11, as sm7 to
sm9, are also submodels of ∆2, and thus true of ∆2. That is, models sm7 to sm9 do not reveal any truths
about ∆2 not revealed by sm11. Although many submodels of (7) commit the same errors or reveal the
same truths, (NCR) counts all of them separately in its correctness calculation.

Now, observe what proportions of true and false submodels are added when model (6) is expanded to
(7). Model (6) has seven submodels, which are also marked in Table 2. Six of these submodels are true, one
is false. When b is truthfully integrated into (6) to yield model (7), six true and two false submodels are
added to the count. That is, the proportion of false submodels increases by a factor of 3/1 = 3, whereas the
proportion of true submodels only multiplies by 12/6 = 2. In other words, even though (7) results from (6)
by integrating true elements only, disproportionally more false than true submodels are thereby introduced.
The same happens when (7) is further expanded to (8). It follows that measuring correctness in terms of
proportions of true submodels, as done by (NCR), cannot possibly do justice to (MEP).

We take this to show, not only that (NCR) does not adequately quantify model correctness, but
that any attempt to quantify correctness based on proportions of true or false submodels faces a risk of
miscounting errors, because those proportions can be twisted under model expansion and thus are not
guaranteed to respect (MEP).

3.3 The problem of indirect causation

To date, CCM benchmarking has predominantly focused on QCA’s or CNA’s success in recovering single-
outcome models, that is, atomic MINUS-formulas. Correspondingly, both (LCR) and (NCR) are custom-
built for correctness assessment in single-outcome recovery. This section argues that (LCR) and (NCR)
are in fact inadequate when the data are generated by multi-outcome structures with causally related
outcomes, that is, by causal chains. In a nutshell, the reason is that models leaving out intermediate links
on causal paths to an ultimate outcome may be perfectly correct without being a submodel of the ground
truth or even containing such a submodel.

To see this, consider the causal chains in the hypergraph of Figure 1. This graph has two non-standard
elements that require introduction: arrows merged by “•” symbolize conjunctive relevance, and “⋄” expresses
that the negation of the factor at the tail of the arrow is relevant. Another notable feature of that structure,
which will become important in section 4.1, is the switching factor F: its positive value F determines that
the impact of B on G is transmitted via D and its negative value f causes that impact to be mediated by
E (for more details see [3]). The complex MINUS-formula in ∆3 expresses that switching structure. Let us
assume that ∆3 is the ground truth used to simulate data in some benchmark test in which the examined
method returns model (9). When causally interpreted, (9) claims that A and B are causally relevant for
G and that they are parts of alternative causes producing G independently of one another. Both of these
claims are indeed true of ∆3, according to which A and B are alternative causes of D and D is a cause of
G, making A and B indirect alternative causes of G. Model (9) is just incomplete. It leaves out the middle
link mediating the causal influence of A and B to G—as well as numerous other causes of G. But, as we
have seen before, incompleteness does not make a model incorrect.

One might be inclined to respond that, despite making numerous true claims about ∆3, (9) also
falsely claims that A and B are direct causes of G, where in truth they are indirect causes. This response
presupposes that there is an objective fact of the matter as to whether a cause—in truth—directly or
indirectly brings about its effect. In light of the (widely assumed) continuity of spacetime, however, it
is possible to interpolate (suitably defined) intermediate factors on virtually any causal path between
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(A + B∗F ↔ D)∗(C + B∗f ↔ E)∗(D + E ↔ G) (∆3)
A + B ↔ G (9)

Figure 1. A causal chain with switching factor F, the corresponding complex MINUS-formula ∆3, and a candidate model
(9). Arrows merged by “•” symbolize conjunctive relevance and “⋄” expresses that the negation of the factor at the tail of
the arrow is relevant.

two factors. Only extremely fine-grained models representing causal structures on the level of objectively
fundamental particles—if such exist at all—, could conceivably trace direct causation. Such a view would
entail that all macro-level models are incorrect (to some degree) because they represent causal dependencies
as direct, which in fact are mediated by intermediate links.

To avoid that consequence, it is standard to view the distinction between direct and indirect causation
as inherently relative to the factors contained in a given model [26, 27]. That means that a causal relation
can be truthfully represented as a direct one in a first model and as an indirect one in a second. Relative
to the factors in model (9), A and B are indeed direct causes of G, because D and E are not contained
in (9). But as D and E are contained in ∆3, the relevance of A and B for G becomes mediated and thus
indirect. But ∆3 might likewise be expandable by further intermediate links, whereby relations represented
as direct ones in ∆3 would be turned into indirect ones. There is no need to stipulate that ∆3 is an
objectively fundamental representation of a causal structure; rather, it truthfully depicts a segment of
reality relative to a set of factors suited for that purpose. But the same segment might also be truthfully
represented on another level of granularity using other factors.10

Against that backdrop, model (9) is incomplete but does not commit an error. An adequate correctness
measure should thus reward it with a maximal score. However, both (LCR) and (NCR) fail to do so. The
only atomic MINUS-formula for outcome G (i.e., the outcome of (9)) contained in ∆3 is this one:

D + E ↔ G (10)

But (9) is neither itself a submodel of (10), and thereby of ∆3, nor does it contain a submodel that would
be a submodel of (10), that is, of ∆3. It follows that (9) does not pass (LCR) and that it receives an
(NCR)-score of 0/3 = 0.

4 A new approach to correctness assessment
In the most general terms, correctness of a model m relative to a ground truth ∆ is the ratio of causal
information contained in m that is true of ∆ to the totality of causal information contained in m. In
other words, it is the ratio of true positives entailed by m to the sum of true positives and false positives
entailed by m—which is also known as precision in many fields [17, 20]. The problems of overcounting

10 Note that viewing the distinction between direct and indirect causation to be model relative neither entails that
causation itself is model relative nor that there is no objective fact of the matter whether claims as “X causes Y ” are
true or false (see [27, section 7] for an extended discussion).
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errors and of indirect causation show that sets of submodels of m and ∆ are not reliable indicators of the
information content, or the amounts of true and false positives, relevant for correctness assessments. As
an alternative, we propose to identify that content by unpacking all different types of causal ascriptions
implied by MINUS-formulas in what we will call causal expositions. The causal expositions of m and ∆
can then be intersected and the correctness of m quantified in terms of the ratio of the complexity of these
intersections to the complexity of the causal exposition of m. The remainder of this section renders that
basic idea more precise.

4.1 Building causal expositions

MINUS-formulas contain four types of causal information: ascriptions of causal relevance (i) to individual
factor values (or literals), (ii) to conjunctions, (iii) to disjunctions, and (iv) sequential orderings of causal
relations in causal paths. For brevity, we refer to these types as literal, conjunctive, disjunctive, and se-
quential ascriptions, respectively. To illustrate, reconsider ∆3, which represents the switching structure in
Figure 1:

(A + B∗F ↔ D)∗(C + B∗f ↔ E)∗(D + E ↔ G) (∆3)

Among many others, ∆3 makes the literal ascription that A is causally relevant to G, the conjunctive
ascription that B∗F is relevant to D, the disjunctive ascription that D+E is relevant to G, or the sequential
ascription that there exists a causal path from A via D to G, expressible as ordered sequence ⟨A, D, G⟩.
We call the compilation of all causal information contained in a MINUS-formula its causal exposition:

Causal Exposition. The causal exposition of a MINUS-formula m is the list of all literal, conjunctive,
disjunctive, and sequential ascriptions entailed by m.

One lesson to learn from the problem of indirect causation is that causal expositions cannot simply be read
off the syntax of a MINUS-formula (or of its submodels), because MINUS-formulas only represent direct
causation (relative to the factors in the formula) and lack a syntactic expression of indirect causation. But
information about indirect causation, and thus causal expositions, can be recovered from MINUS-formulas
by syntactic transformations standard in Boolean algebra.

Viewed as a mere Boolean expression, the first atomic MINUS-formula in ∆3, viz. A + B∗F ↔ D,
states that A + B∗F and D are equivalent, which entails that they are substitutable for one another
without breach of Boolean dependence relations of sufficiency and necessity. This substitutability principle
allows for replacing D in the third atomic formula in ∆3, viz. in D + E ↔ G, by A + B∗F :

A + B∗F + E ↔ G (11)

(11) is automatically in disjunctive normal form (DNF). In other examples, additional transformations—for
instance, factoring out—may be required to bring expressions resulting from such substitutions into DNF;
but any Boolean expression can easily be brought into DNF. The substitutability principle ensures that,
if D + E ↔ G truthfully expresses Boolean dependence relations, then so does (11). But the principle
does not guarantee that the expression resulting from the substitution remains redundancy-free and thus
causally interpretable. And indeed, (11) contains a redundancy: in the set of all configurations compatible
with ∆3, that is, in so-called ideal data (i.e., noise-free and unfragmented data) generated from ∆3, F does
not make a difference to G. The factor F is a mere switch in ∆3; its positive value F determines that the
causal impact of B is transmitted via D to G and its negative value f causes that impact to be mediated
by E; but whichever value F takes, B itself is sufficient for G.11 Hence, B∗F in (11) is only sufficient for
G but not minimally so.

11 This shows that causation as defined by the (M)INUS-theory is not a transitive relation. F is a cause of D, which
is a cause of G, but F is no cause of G (see [3]).
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If we additionally minimize sufficient and necessary conditions in (11) relative to ideal data on ∆3 (e.g.
by means of Quine-McCluskey optimization [28]), we get this expression:

A + B + E ↔ G (12)

(12) has the form of an atomic MINUS-formula. As it results from syntactic transformations of ∆3, it can
be seen as representing relations of indirect causation entailed by ∆3. It states that A and B are causally
relevant for G, which, relative to the set of factors in ∆3, amounts to indirect relevance. For brevity, we
call it an indirect MINUS-formula relative to ∆3. Indirect MINUS-formulas are recoverable from complex
MINUS-formulas by substitution of equivalents, DNF transformation, if needed, and Boolean minimization.

Two further indirect MINUS-formulas can be recovered from ∆3 in the same way. (13) is built by
substituting C + B∗f for E in D + E ↔ G, and (14) is the result of replacing both D and E by their
equivalents in ∆3 and subsequent minimization:

B + C + D ↔ G (13)
A + B + C ↔ G (14)

(12), (13), and (14) are all the indirect MINUS-formulas recoverable from ∆3. We will call the union of
all atomic (direct) MINUS-formulas in ∆3 and all indirect MINUS-formulas recoverable from it the chain-
expansion of ∆3. But before we can explicitly define that notion, we have to consider the case where the
complex MINUS-formula to be chain-expanded is not a ground truth but a model inferred from data.

Hence, suppose that the following multi-outcome model is inferred from data simulated from ground
truth ∆3:

(A + B∗F ↔ D)∗(D + E ↔ G) (15)

If we substitute D in D + E ↔ G by its equivalent A + B∗F and then minimize relative to ideal data
on (15), we do not end up with (12) but with (11). That is, if indirect MINUS-formulas are recovered
from (15) through Boolean minimization relative to ideal data on (15), F appears to make a difference to
G because F is no switching factor in (15). However, (15) is not inferred from ideal data generated from
itself but from data simulated from ∆3, and according to ∆3, F does not make a difference to G. That
means that the data from which (15) is inferred do not contain evidence for the indirect relevance of F

for E. It would therefore not be adequate to recover an indirect relevance ascription from (15) for which
there is no evidential basis in the discovery context of that model. We thus submit that when indirect
causation is recovered from models inferred from data, Boolean minimization should be conducted relative
to that actual data and not, as in case of chain-expanding ground truths, relative to ideal data. In sum,
the following is our definition of the notion of a chain-expansion:

Chain-Expansion. The chain-expansion of a MINUS-formula m is the union of the atomic (direct)
MINUS-formulas contained in m and the indirect MINUS-formulas recoverable from m by substitution
of equivalents, DNF transformation, and Boolean minimization, either relative to the data from which
m is inferred or, if m is not inferred from data, relative to ideal data on m.

The important feature of chain-expansions for quantifying model quality is that they syntactically represent
all types of causal ascriptions entailed by a MINUS-formula m. The literal, conjunctive, and disjunctive
ascriptions of m for an outcome Z are simply the sets of all factor values and all maximally long conjunctions
and disjunctions—freed of duplicates—that appear on the left of “↔” in the atomic MINUS-formulas for Z

in m’s chain-expansion. The sequential ascriptions for outcome Z are the maximally long ordered sequences
of factor values ⟨X1, . . . , Xn⟩ satisfying the following path-rule: for all Xi and Xj with i < j in ⟨X1, . . . , Xn⟩,
there is a MINUS-formula in m’s chain-expansion with Xi on the left and Xj on the right of “↔”, and Z

is the last element of the sequence (i.e., Xn = Z).
Table 3 lists the chain-expansion of ∆3 in the left-most column and the causal exposition, subdivided

by outcomes, in the other columns. The literal ascriptions for each outcome in ∆3 can be recovered from
the chain-expansion by removing conjunctors “∗”, disjunctors “+”, and duplicates from the expressions
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chain-expansion causal exposition

literals conjunctions disjunctions sequences

A+B∗F ↔ D D: {A,B, F} {A,B∗F} {A+B∗F} {⟨F,D⟩,⟨B,D⟩,⟨A,D⟩}

C +B∗f ↔ E E: {C,B, f} {C,B∗f} {C +B∗f} {⟨f,E⟩,⟨B,E⟩,⟨C,E⟩}

D + E ↔ G

G:
{A,B,D,

C,E}
{A,B,D,

C,E}

{D + E,

A+B + E,

B + C +D,

A+B + C}

{⟨A,D,G⟩,
⟨B,D,G⟩,
⟨B,E,G⟩,
⟨C,E,G⟩}

A+B + E ↔ G

B + C +D ↔ G

A+B + C ↔ G

Table 3. Chain-expansion and causal exposition of ground truth ∆3.

on the left of “↔”. The conjunctive ascriptions are obtained by removing “+” and duplicates, and the
disjunctive ascriptions are simply the expressions on the left of “↔”. Note that, in case of outcome G,
conjunctive ascriptions are identical to literal ones because none of G’s MINUS-formulas actually features
a conjunctor, and a single factor value formally counts as a trivial conjunction (and disjunction). Finally,
sequential ascriptions are built by combining as many factor values as possible from the literal ascriptions
following the path-rule for every outcome. In case of outcome G, this amounts to combining the factor
values on the left-hand sides of D’s and E’s MINUS-formulas with D and E and adding G if, and only if,
the first element of the sequence also appears on the left-hand side of a MINUS-formula of G.

4.2 Intersecting causal expositions

To quantify the correctness of a model m relative to a ground truth ∆, we propose to intersect the literal,
conjunctive, disjunctive, and sequential ascriptions rendered transparent by the causal expositions of m
and ∆. The ratios of the complexities of these intersections to the complexities of m’s literal, conjunctive,
disjunctive, and sequential ascriptions then yield measures for literal, conjunctive, disjunctive, and sequential
correctness.

To make that concrete, assume that the following model is inferred from data generated by ground
truth ∆3.

(A∗B ↔ D)∗(D + B∗C ↔ G) (16)

Model (16), which contains no information about outcome E, makes two false claims about ∆3: first, it
erroneously places A and B in the same conjunctive cause of D, and second, B and C appear in the same
conjunctive cause of G, which in truth are alternative indirect causes of G. But all literal ascriptions and
the placement of D in a separate disjunct leading to G are true of ∆3. To quantify the correctness of (16),
we first chain-expand that model by replacing D in the atomic MINUS-formula of G by A∗B and then
build its causal exposition. The result is in Table 4.

Intersecting the literal, conjunctive, and disjunctive ascriptions of (16) and ∆3 (cf. Table 3) for each
outcome is straightforward. The literal intersection is the set of factor values contained in the literal
ascriptions of both (16) and ∆3. The conjunctive intersection is the set of all conjunctions with a maximal
amount of conjuncts that can be reached from the conjunctive ascriptions of both (16) and ∆3 by mere

chain-expansion causal exposition

literals conjunctions disjunctions sequences

A∗B ↔ D D: {A,B} {A∗B} {A∗B} {(B,D), (A,D)}

D +B∗C ↔ G
G:

{A,B,

C,D}
{D,B∗C,

A∗B}
{D +B∗C

A∗B +B∗C}
{(A,D,G), (B,D,G),

(B,G), (C,G)}A∗B +B∗C ↔ G

Table 4. Chain-expansion and causal exposition of model (16).
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out. model (16) ground truth ∆3 intersection ratio weight correctness

lit. D: { A , B } {A,B, F} { A , B } 2/2 2/6

E: {C,B, f} 1

G: { A , B , C , D } {A,B,C,D,E} { A , B , C , D } 4/4 4/6

conj. D: { A ∗ B } {A,B∗F} { A ,B} 1/2 2/7

E: {C,B∗f} 0.57

G: { D , B ∗ C , A ∗ B } {D,B,A,C,E} { D , B , A ,C,E} 3/5 5/7

dis. D: { A ∗ B } {A+B∗F} { A ,B} 1/2 2/9

E: {C +B∗f}
0.56

G: { D + B ∗ C ,

A ∗ B + B ∗ C }

{C + E,

A+B + E,

B + C +D,

A+B + C}

{ D + B ,D + C,

A + B ,A+ C,

B + C}
4/7 7/9

seq. D: { ⟨B,D⟩ , ⟨A,D⟩ } {⟨F,D⟩,⟨B,D⟩,
⟨A,D⟩}

{ ⟨B,D⟩ , ⟨A,D⟩ } 2/2 2/6

1

E: {⟨f,E⟩,⟨B,E⟩,
⟨C,E⟩}

G:

{ ⟨A,D,G⟩ ,

⟨B,D,G⟩ ,

⟨B,G⟩ , ⟨C,G⟩ }

{⟨A,D,G⟩,
⟨B,D,G),
⟨B,ZZE ,G⟩,
⟨C,ZZE ,G⟩}

{ ⟨A,D,G⟩ ,

⟨B,D,G⟩ ,

⟨B,G⟩ , ⟨C,G⟩ }

4/4 4/6

overall correctness (Corr): 6/28 · 1 + 7/28 · 0.57 + 9/28 · 0.56 + 6/28 · 1 = 0.75
Table 5. Intersections and correctness scoring for model (16) relative to ground truth ∆3. Grey shading indicates the ex-
pressions used for calculating the correctness ratios. “ZZE ” represents the removal of E in order to harmonize the factor sets
of (16) and ∆3.

elimination of conjuncts. For example, the (trivial) conjunction B can be reached from (16)’s conjunctive
ascription A∗B for outcome D by elimination of A as well as from ∆3’s conjunctive ascription B∗F for
the same outcome by elimination of F , and there are no conjunctions reachable in that manner with more
conjuncts, meaning that B has a maximal amount of conjuncts. The disjunctive intersection is the set of
all disjunctions with a maximal amount of disjuncts that can be reached from the disjunctive ascriptions
of both (16) and ∆3 by elimination of disjuncts and conjuncts. For example, the disjunctive ascription
D + B can be reached by elimination of C from (16)’s disjunctive ascription D + B∗C for outcome G

as well as from ∆3’s disjunctive ascription B + C + D for the same outcome, and there are no longer
disjunctions reachable in that manner. Table 5 lists all intersections of (16) and ∆3. As can easily be
seen from that table, conjunctive and disjunctive intersections tend to contain multiple elements; that is,
multiple conjunctions and disjunctions with maximal amounts of conjuncts and disjuncts can be reached
from both (16) and ∆3.

As the difference between direct and indirect causal relevance is relative to a set of modeled factors, the
correctness of the sequential ascriptions of a model must be assessed relative to its set of factors. This, in
turn, requires that the sequential ascriptions of the corresponding ground truth be pruned to the model’s
factor set before intersecting. More concretely, model (16) is correct to entail that B is a direct cause of
G, despite B being an indirect cause of G in ∆3. The reason is that (16) does not feature the factor E,
which is the intermediate link between B and G in ∆3, meaning that relative to the factors in (16) B

indeed is a direct cause of G. Hence, before intersecting sequential ascriptions, factor E must be removed
from the sequential ascriptions of ∆3, which is represented by “@@E ” in Table 5. After such harmonizing,
the sequential intersection of (16) and ∆3 simply comes down to the set of sequential ascriptions made by
both (16) and ∆3.
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4.3 Quantifying correctness

An intersection expresses the amount of causal information of a particular type shared by the model and
ground truth, in other words, it expresses the causal claims made by the model that are true of the ground
truth, that is, the model’s true positives. As correctness is a measure for the ratio of true information in a
model, the next step towards putting a number on the correctness of (16), is to quantify the complexities
of intersections and corresponding ascriptions. For literals, conjunctions, and disjunctions we quantify
complexities in terms of numbers of factor values. For instance, the set {A, B} of (16)’s literal ascriptions
for outcome D has complexity 2 because it contains 2 factor values; or the set {D + B∗C, A∗B + B∗C}
of its disjunctive ascriptions for outcome G has complexity 7 because it contains 7 factor values. The
ratio of true information, then, is the ratio of factor values in these ascriptions that have counterparts
in the corresponding intersections. Thus, since all factor values in {A, B} have counterparts in the literal
intersection (see the first row of Table 5), the correctness ratio of {A, B} is 2/2. By contrast, the disjunctive
ascriptions for outcome G are not completely represented in the disjunctive intersection (row 9 of Table
5). The first disjunction D + B∗C can be paired with either D + B or D + C in the corresponding
intersection, and, since both of the latter have equal complexity, it does not matter which of them is chosen
as counterpart. The same holds for the second disjunction A∗B + B∗C: it can be paired with either A + B

or A + C or B + C in the intersection. Whichever elements of the intersection are chosen as counterparts,
a total of 4 of the 7 factor values in the set of disjunctive ascriptions for outcome G have counterparts
in the corresponding intersection, yielding a correctness ratio of 4/7. In Table 5, the factor values used for
calculating the correctness ratios are highlighted with grey shading.

For sequences, we aim to avoid unnecessary double-counting by quantifying complexities not in terms of
the number of factor values but in terms of the number of paths. That is, correctness ratios for the sequential
ascriptions of a model are ratios of the model’s paths that are contained in the sequential intersection
with the ground truth. For example, as both paths in the set of sequential ascriptions {⟨B, D⟩, ⟨A, D⟩} for
outcome D are also contained in the sequential intersection for that outcome, that set receives a correctness
ratio of 2/2.

The next step to a correctness quantification of (16) consists in aggregating these correctness ratios of
the component ascriptions. We choose a weighted mean for that purpose, where weights are the complexity
shares of component ascriptions. For literal, conjunctive, and disjunctive correctness, weights are calculated
based on the number of factor values in a corresponding ascription. In the case of sequential correctness, they
are based on the number of paths. For instance, for both outcomes combined, the conjunctive ascriptions
of (16) have a total complexity of 7 factor values, with 2 pertaining to outcome D and 5 to outcome G.
That is, the weights for the component ascriptions {A∗B} and {D, B∗C, A∗B} are 2/7 and 5/7, respectively.
Weighing the components’ ratios by these weights yields a conjunctive correctness score of 0.57. Or, the
sequential ascription of (16) contains a total of 6 paths, with 2 leading to outcome D and 4 to outcome G,
resulting in the weights 2/6 and 4/6, respectively, and an overall sequential correctness score of 1. Table 5
provides an overview of all weights and resulting correctness scores.

Finally, the four correctness scores must be aggregated into one overall score, which we again do with
a weighted mean. The weights are based on the complexity shares of a model’s whole causal exposition
covered by a corresponding correctness score. The total complexity of the causal exposition is the sum of
the complexities of the four types of causal ascriptions. For model (16), it is 6 + 7 + 9 + 6 = 28, resulting
in the weights indicated in the bottom row of Table 5. Overall, the correctness score of model (16) relative
to ground truth ∆3 is 0.75.

Here, then, is our quantitative correctness measure in condensed form. Let m be a CCM model inferred
from data generated from a ground truth ∆. Let lOi

(m), cOi
(m), dOi

(m), and sOi
(m) be m’s literal,

conjunctive, disjunctive, and sequential ascriptions for outcome Oi, i = 1, ..., n, and analogously for lOi
(∆),

cOi
(∆), dOi

(∆), and sOi
(∆). Moreover, let

∣∣ . . .
∣∣ denote the complexity of the enclosed expression, and

let wx
Oi

, x ∈ {l, c, d, s}, be the weight associated with the corresponding causal ascriptions of the ith

outcome Oi. Then, literal, conjunctive, disjunctive, and sequential correctness, (Corrl), (Corrc), (Corrd),
and (Corrs) are defined as follows:
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Corrl =
n∑

i=1

∣∣ lOi
(m) ∩ lOi

(∆)
∣∣∣∣ lOi

(m)
∣∣ · wl

Oi
Corrc =

n∑
i=1

∣∣ cOi
(m) ∩ cOi

(∆)
∣∣∣∣ cOi

(m)
∣∣ · wc

Oi

Corrd =
n∑

i=1

∣∣ dOi
(m) ∩ dOi

(∆)
∣∣∣∣ dOi

(m)
∣∣ · wd

Oi
Corrs =

n∑
i=1

∣∣ sOi
(m) ∩ sOi

(∆)
∣∣∣∣ sOi

(m)
∣∣ · ws

Oi

Aggregating these measures yields the following measure for overall correctness:

Correctness (Corr). The overall correctness of m for ∆ is the weighted mean of m’s (Corrl), (Corrc),
(Corrd), and (Corrs) scores, or formally, where wx are the corresponding weights:

Corr(m, ∆) =
∑

x ∈ {l,c,d,s}

Corrx · wx

An isolated (Corr)-score as 0.75 for (16) is not very informative; it merely says that (16) is neither entirely
correct nor entirely incorrect. How (in)correct it is becomes clear only if its correctness score is compared
with the scores of other models inferred from the same data. Table 6a thus lists the (Corr)-scores of further
model candidates assumed to be inferred from the same data simulated from ∆3 as (16).12 The first model,
m1, coincides with (16), except that it does not include D as cause of G. By leaving out D, m1 leaves out
a correct alternative cause of G. Contrary to (16), though, m1 is not a chain, meaning that A∗B, to which
(16) erroneously ascribes causal relevance for both D and G, is not entailed to be causally relevant for G by
m1, which thereby avoids a false conjunctive ascription. Overall, m1 receives the same (Corr)-score as (16).
In model m2, the incorrect conjunction A∗B of (16) is replaced by a correct disjunction A + B ↔ D, and
model m3 even gets B + C ↔ G right. Correspondingly, the (Corr)-score of m2 is higher than (16)’s and
lower than m3’s. As m3 contains no error, it receives a perfect (Corr)-score. Likewise, m4, which was used
to illustrate the problem of indirect causation in section 3.3, is error-free and scores perfectly. The same
holds for m5, because it is true that A and B are direct causes of G relative to the set {A, B, E, G}. That
is not true for model m6, which additionally contains the link D mediating the causal impact of A and B

on G in the ground truth ∆3. It follows that m6 erroneously entails that A and that B are direct causes
of G and alternatives to D relative to the set {A, B, D, E, G}. Model m6 reaches a disjunctive correctness
of 0.75 and a sequential correctness of 0.5, which, with the perfect literal and conjunctive scores, aggregate
to 0.81. Finally, while m6 makes no incorrect literal and conjunctive ascriptions, m7, by falsely ascribing

# model (Corr)-score

m1 (A∗B ↔ D)∗(B∗C ↔ G) 0.75

m2 (A+B ↔ D)∗(B∗C ↔ G) 0.88

m3 (A+B∗F ↔ D)∗(B + C ↔ G) 1

m4 A+B ↔ G 1

m5 A+B + E ↔ G 1

m6 A+B + E +D ↔ G 0.81

m7 A+B + E +D + F ↔ G 0.65

(a)

# model (Corr)-score

∆2 A∗b∗D∗F + a∗B∗C∗D ↔ E

(6) A + C + D ↔ E 0.92

(7) A∗b + C + D ↔ E 0.94

(8) A∗b∗F + C + D ↔ E 0.95

(b)

Table 6. Table (a) contains additional CCM models and their (Corr)-scores relative to ∆3 to be contrasted with (16) and
its score. Table (b) exhibits the (Corr)-scores of models (6) to (8) for ground truth ∆2.

12 For details on how the scores in Table 6 are generated, see the replication script in the supplementary material.
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causal relevance for G to F , commits errors in all types of ascriptions. Correspondingly, its (Corr)-score is
the lowest.

Lastly, Table 6b exhibits the (Corr)-scores of the examples demonstrating the shortcomings of (NCR)
in section 3.2. Model (8) has the highest and (6) the lowest score. That is, contrary to (NCR), (Corr) does
not punish (8) for containing more true information than (6), while committing the same mistake as (6).
This result generalizes. Adding truthfully located elements from the ground truth to a model increases
the complexities of the literal, conjunctive, disjunctive, and sequential intersections and of the model’s
corresponding causal ascriptions by the same amount, meaning that numerators and denominators of
(Corrl), (Corrc), (Corrd), and (Corrs) increase by the same amount as well. Hence, truthfully expanding
models while keeping errors constant increases the (Corr)-score or keeps it constant. By contrast, adding
errors to a model while keeping the true information constant only increases the complexities of a model’s
causal ascriptions but not of their intersections with the ground truth’s causal ascriptions. In consequence,
the numerators of (Corrl), (Corrc), (Corrd), and (Corrs) stay the same and the denominators increase,
inducing the (Corr)-score to drop or to stay at the minimum of 0. In sum, (Corr) does neither overcount
false nor true information in models. It does justice to the model expansion principle (MEP).

5 Completeness
Table 6a also shows that correctness cannot be the only measure of model quality. Models m3, m4, and
m5 are all error-free and thus receive (Corr)-scores of 1 each, but they obviously differ in how much detail
about the ground truth they reveal. The quality of a model does not only depend on error avoidance, which
is what correctness measures, but also on the model’s informativeness. To measure that quality aspect,
correctness must be complemented by another measure called completeness, or recall in many fields [17, 20].
As indicated in section 1, there are various completeness measures in use in CCM benchmarking, but they
all rely on contrasting submodel sets of models and ground truths. This approach inevitably leads to the
problem of indirect causation. For that reason, we now proceed to pair our correctness measure with a
completeness measure that builds on the tools developed in this paper.

In the most general terms, completeness of a model m relative to a ground truth ∆ is the ratio of
causal information contained in ∆ that is revealed by m to the totality of causal information contained in
∆. As in case of correctness, we propose to break the causal information in m and ∆ down into literal,
conjunctive, disjunctive, and sequential ascriptions, as rendered transparent in causal expositions of m and
∆, respectively. The amount of literal ascriptions of ∆ for Outcome Oj , lOj

(∆), that is revealed by m is
cashed out in terms of the ratio of the complexity of the intersection between lOj

(m) and lOj
(∆) to the

complexity of lOj
(∆)—and analogously for the other types of ascriptions. These ratios are then aggregated

for each of the m outcomes in ∆ to literal, conjunctive, disjunctive, and sequential correctness measures,
(Compl), (Compc), (Compd), and (Comps), using a weighted mean with weights, vx

Oj
, x ∈ {l, c, d, s},

corresponding to the complexity share of
∣∣ lOj

(∆)
∣∣, ∣∣ cOj

(∆)
∣∣, ∣∣ dOj

(∆)
∣∣, and

∣∣ sOj
(∆)

∣∣:
Compl =

m∑
j=1

∣∣ lOj
(m) ∩ lOj

(∆)
∣∣∣∣ lOj

(∆)
∣∣ · vlOj

Compc =

m∑
j=1

∣∣ cOj
(m) ∩ cOj

(∆)
∣∣∣∣ cOj

(∆)
∣∣ · vcOj

Compd =

m∑
j=1

∣∣ dOj
(m) ∩ dOj

(∆)
∣∣∣∣ dOj

(∆)
∣∣ · vdOj

Comps =

m∑
j=1

∣∣ sOj
(m) ∩ sOj

(∆)
∣∣∣∣ sOj

(∆)
∣∣ · vsOj

(Compl), (Compc), (Compd), and (Comps) are formulated in parallel to the corresponding correct-
ness measures. The only difference is that denumerators in the latter feature complexities of m’s causal
ascriptions, while completeness measures contain complexities of ∆’s ascriptions in the denumerators.
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out. ground truth ∆3 model (16) intersection ratio weight completeness

lit. D: { A , B , F } {A,B} { A , B } 2/3 3/11

E: { C , B , f } 0/3 3/11 0.55

G: { A , B , C , D , E } {A,B,C,D} { A , B , C , D } 4/5 5/11

conj. D: { A , B ∗ F } {A∗B} { A , B } 2/3 3/11

E: { C , B ∗ f } 0/3 3/11 0.55

G: { D , B , A , C , E } {D,B∗C,A∗B} { D , B , A , C ,E} 4/5 5/11

dis. D: { A + B ∗ F } {A∗B} { A ,B} 1/3 3/17

E: { C + B ∗ f } 0/3 3/17

0.47

G:

{ C + E ,

A + B + E ,

B + C + D ,

A + B + C }

{D +B∗C,

A∗B +B∗C}

{ D + B ,D + C ,

A + B , A + C ,

B + C}
7/11 11/17

seq. D:
{ ⟨F,D⟩ , ⟨B,D⟩ ,

⟨A,D⟩ }
{⟨B,D⟩,⟨A,D⟩} { ⟨B,D⟩ , ⟨A,D⟩ } 2/3 3/10

0.4
E:

{ ⟨f,E⟩ , ⟨B,E⟩ ,

⟨C,E⟩ }
0/3 3/10

G:

{ ⟨A,D,G⟩ ,

⟨B,D,G⟩ ,

⟨B,E,G⟩ ,

⟨C,E,G⟩ }

{⟨A,D,G⟩,
⟨B,D,G⟩,

⟨B,G), ⟨C,G⟩}

{ ⟨A,D,G⟩ ,

⟨B,D,G⟩ ,
⟨B,G⟩, ⟨C,G⟩}

2/4 4/10

overall completeness (Comp): 11/49 · 0.55 + 11/49 · 0.55 + 17/49 · 0.47 + 10/49 · 0.4 = 0.49
Table 7. Intersections and completeness scoring for model (16) relative to ground truth ∆3. Grey shading indicates the
expressions used for calculating the completeness ratios.

We aggregate (Compl), (Compc), (Compd), and (Comps) into an overall completeness measure using a
weighted mean where the weights, vx, correspond to the complexity shares of ∆’s whole causal exposition
covered by a corresponding completeness measure.

Completeness (Comp). The overall completeness of m for ∆ is the weighted mean of m’s (Compl),
(Compc), (Compd), and (Comps) scores, or formally, where vx are the corresponding weights:

Comp(m, ∆) =
∑

x ∈ {l,c,d,s}

Compx · vx

To illustrate, we reconsider model (16) from the previous section and calculate its (Comp)-score relative to
ground truth ∆3. Table 7 reiterates the relevant causal ascriptions from Table 5, but now the ascriptions
of ∆3 are the point of reference and we determine how many of them are reproduced by (16), which are
the ones in the intersection. This requires that as many causal ascriptions of ∆3 as possible are covered
by causal ascriptions of (16); and since the former are more numerous than the latter, some ascriptions
of ∆3 may be covered by the same ascription of (16). But each ascription of ∆3 may only be covered
by one ascription of (16). Sometimes the intersections contain multiple elements that can be chosen as
counterparts of the elements of ∆3’s causal ascriptions. The ones that enter the completeness calculations
in Table 7 are highlighted with grey shading.

As in case of correctness scores, completeness scores are easiest to interpret when contrasting multiple
models inferred from the same data. For that reason, let us compare the (Comp)-score of (16) with the scores
of the models in Table 8, all of which are assumed to be inferred from the same data simulated from ∆3 and



18 Michael Baumgartner and Christoph Falk, Quantifying the Quality of Configurational Causal Models

# model (Comp)-score

m1 (A∗B ↔ D)∗(B∗C ↔ G) 0.29

m2 (A+B ↔ D)∗(B∗C ↔ G) 0.31

m3 (A+B∗F ↔ D)∗(B + C ↔ G) 0.43

m4 A+B ↔ G 0.18

m5 A+B + E ↔ G 0.29

m6 A+B + E +D ↔ G 0.40

m7 A+B + E +D + F ↔ G 0.40

m8 (A+B∗F ↔ D)∗(B∗f + C ↔ E)∗(D + E ↔ G) 1

m9 (A+B∗F +H ↔ D)∗(B∗f + C +K ↔ E)∗(D + E ↔ G) 1
Table 8. Additional CCM models and their (Comp)-scores relative to ∆3 to be contrasted with (16) and its score.

the first seven of which were already evaluated for correctness in Table 6a.13 That comparison highlights
two important features of (Comp). First, (Comp) is sensitive to the differences in informativeness to which
(Corr) is insensitive. While models m3, m4, and m5 are error-free and thus get perfect (Corr)-scores, they
differ in informativeness, which is reflected in their differing (Comp)-scores. Second, contrary to (Corr),
(Comp) does not punish for errors in models. To see this, compare models m6 and m7: the latter contains
one error more than the former, yet they both score the same on (Comp). Or, contrast models m8 and
m9: the former is error-free while the latter falsely ascribes causal relevance to H and K, still they both
receive perfect (Comp)-scores because they contain all the causal information in ∆3.

6 Aggregating correctness and completeness
In order to assess the overall quality of models in CCM benchmarking, correctness and completeness scores
need to be suitably aggregated. Ideally, both scores are 1. In that case, the ground truth is correctly and
completely recovered, meaning that the inferred model is identical to the ground truth. It is uncontroversial
that this is the optimal result of a benchmark test. It means that the tested method successfully recovers
the very structure used to simulate the data. Unfortunately, this ideal scenario often does not obtain when
the data are non-ideal, that is, when they feature fragmentation or noise. We cannot expect a method to
find the complete ground truth if the evidence in the data is incomplete, and we cannot expect a method
to avoid mistakes entirely if some of the evidence is not faithful to the ground truth. But of course, even in
non-ideal data scenarios we want the quality of the models to be as high as possible. Methods outputting
models of higher quality, on average, are preferable to methods with lower quality outputs. Hence, we need
an account of overall model quality that suitably aggregates (Corr)- and (Comp)-scores.

Unfortunately, it is not uncontroversial among CCM methodologists how correctness and completeness
should be aggregated. Hasebrouck and Thomann [29, p. 1874] distinguish between two approaches to eval-
uating models: the SI-approach prioritizes the substantive interpretability of models and the RF-approach
prioritizes the redundancy-freeness of the models. According to the SI-approach, the consistency (see foot-
note 6) of each disjunct in a model should be as high as possible, even if a disjunct contains conjuncts that
are not causes of the outcome. The idea is that each disjunct should constitute a complete recipe—possibly
with redundant ingredients—to actualize the outcome. By contrast, the RF-approach demands that each
disjunct in a model be exclusively composed of true causes of the outcome, even if the disjunct as a whole
does not reach optimal consistency and is only an incomplete recipe for the outcome. It follows that the
SI-approach puts more weight on completeness, whereas the RF-approach takes correctness to be more
important. A majority of representatives of the QCA method adhere to the SI-approach, while a minor-

13 For detailed breakdowns of these completness scores, see the replication script in the supplementary material.
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# model Corr Comp F0.5 F2

(16) (A∗B ↔ D)∗(D +B∗C ↔ G) 0.75 0.49 0.68 0.53

m1 (A∗B ↔ D)∗(B∗C ↔ G) 0.75 0.29 0.57 0.33

m2 (A+B ↔ D)∗(B∗C ↔ G) 0.88 0.31 0.64 0.35

m3 (A+B∗F ↔ D)∗(B + C ↔ G) 1 0.43 0.79 0.48

m4 A+B ↔ G 1 0.18 0.53 0.22

m5 A+B + E ↔ G 1 0.29 0.67 0.34

m6 A+B + E +D ↔ G 0.81 0.40 0.67 0.45

m7 A+B + E +D + F ↔ G 0.65 0.40 0.58 0.43

m8 (A+B∗F ↔ D)∗(B∗f + C ↔ E)∗(D + E ↔ G) 1 1 1 1

m9 (A+B∗F +H ↔ D)∗(B∗f + C +K ↔ E)∗(D + E ↔ G) 0.73 1 0.77 0.93
Table 9. Comparing the overall quality of model (16) relative to ground truth ∆3 with the quality of other models inferred
from the same data at β = 0.5 and β = 2.

ity (i.e., those that advocate so-called parsimonious QCA solutions) and all representatives of the CNA
method adhere to the RF-approach.

We do not want to take a stance, here, on whether correctness or completeness should be preferred
when measuring overall model quality. An aggregation that is standard in binary classification and that
can easily accommodate either preference is a weighted harmonic mean with a positive real weight β, the
so-called Fβ-score [30]:

Overall Quality. Let m be a CCM model inferred from data generated from a ground truth ∆. The
overall quality of m for ∆ is

Fβ = (1 + β2) · Corr(m, ∆) · Comp(m, ∆)
(β2 · Corr(m, ∆)) + Comp(m, ∆)

By assigning a value to β any prioritization of correctness and completeness can be obtained: the com-
pleteness of m relative to ∆, Comp(m, ∆), is β times as important as the correctness Corr(m, ∆). For
example, at β = 2 completeness is twice as important as correctness, and at β = 0.5 completeness is half
as important as correctness. At β = 1, Fβ reduces to the harmonic mean of correctness and completeness.

The harmonic mean is preferred over the arithmetic mean because, contrary to the latter, it requires
that a high-quality model strike a balance between correctness and completeness. More specifically, if
correctness and completeness scores are balanced at moderate values, the harmonic mean is higher than if
the two scores are at opposite extremes, whereas the arithmetic mean is insensitive to such imbalances.

To illustrate Fβ-aggregations of (Corr) and (Comp), Table 9 exhibits the Fβ-scores of model (16)
relative to ∆3 at β = 0.5 and β = 2, respectively, and contrasts them with the corresponding scores of
the other model candidates considered in the previous section. Regardless of the value assigned to β, the
best model is m8, which is identical to the ground truth ∆3. Beyond that clear winner, however, Table
9 shows that different β values not only change the absolute quality scores but also the relative quality
ranking among the models. At β = 0.5, the second best model is m3, followed by m9 and (16). At β = 2,
the second best model is m9, followed by (16) and m3.

This demonstrates that the relative importance assigned to (Corr) and (Comp) in a CCM benchmark
test may have a great influence on the results. Any such test must hence be accompanied by an argument
justifying the chosen β. For example, if a test aims to scrutinize a method’s reliability in recovering (M)INUS
causes from fragmented and noisy data, false positives must be punished more than incomplete ground truth
recovery, meaning that β should be lower than 1. By contrast, if a test wants to determine how successfully
a method recovers recipes for the outcome, possibly including redundant ingredients, incomplete ground
truth recovery should be punished more than false positives, meaning that β should be higher than 1.
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7 Conclusion
This paper developed quantitative correctness (precision) and completeness (recall) measures, (Corr) and
(Comp), to be used in benchmarking of Configurational Comparative Methods as QCA or CNA. Contrary
to the benchmarking criteria currently employed, these new measures do not rely on comparing sets of
submodels of candidate models and ground truths. Instead, (Corr) and (Comp), first, unpack the different
types of causal ascriptions implied by models and ground truths in causal expositions, second, intersect
those expositions, and third, quantify correctness and completeness in terms of the complexities of these
intersections. In this manner, (Corr) and (Comp) avoid the problems of overcounting errors and of indirect
causation, which affect current benchmarking criteria. The paper ended by accounting for overall model
quality in terms of a weighted harmonic mean of (Corr) and (Comp). That account is easily fine-tuned
to accommodate any preference ordering of correctness and completeness that may be relevant in a given
benchmarking context. Taken jointly, these new measures not only avoid problems of current benchmarking
criteria, but they broaden and sharpen the resources for CCM benchmarking more generally.
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