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Parsimony and Causality

Michael Baumgartner

Abstract This paper takes issue with the current tendency in the literature on Qualita-

tive Comparative Analysis (QCA) to settle for so-called intermediate solution formulas,

in which parsimony is not maximized. I show that there is a tight conceptual connection

between parsimony and causality: only maximally parsimonious solution formulas reflect

causal structures. However, in order to maximize parsimony, QCA—due to its reliance on

Quine-McCluskey optimization (Q-M)—is often forced to introduce untenable simplifying

assumptions. The paper ends by demonstrating that there is an alternative Boolean method

for causal data analysis, viz. Coincidence Analysis (CNA), that replaces Q-M by a different

optimization algorithm and, thereby, succeeds in consistently maximizing parsimony with-

out reliance on untenable assumptions.

1 Introduction

Sufficient and necessary conditions—the primary search targets of Boolean (or set-theoretic

or configurational) methods of causal inference—tend to feature redundant elements, i.e.

factors such that, if they are eliminated, the remaining conditions are still sufficient and/or

necessary for corresponding outcomes. For the methodological framework of Qualitative

Comparative Analysis (QCA), Ragin and Sonnett (2005) distinguish three different search

strategies researchers may adopt when eliminating redundant elements from Boolean solu-

tion formulas (Boolean models1). In case of limitedly diverse data, only the most liberal

strategy is able to eliminate all redundancies. Yet, as this strategy typically requires a host

of counterfactual simplifying assumptions, which are often difficult or impossible to justify,

it has recently become common practice in QCA studies to settle for so-called intermediate

solution formulas with some redundancies remaining (cf. Ragin and Rihoux 2004; Ragin

2008b, ch. 9; Schneider and Wagemann 2012, chs. 6, 8; Skaaning 2011).2 This is usually
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1 In this paper, the notion of a model is used in terms of a full specification of the functional dependencies

among endogenous and exogenous factors. In the QCA literature, a model is sometimes (e.g. Wright and

Boudet 2012) simply taken to be a selection of endogenous and exogenous factors (without a specification of

functional dependencies).
2 Some studies even settle for so-called conservative solution formulas with all redundancies remaining

(cf. Grofman and Schneider 2009).
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legitimized with recourse to principles as Occam’s Razor, according to which parsimony is

a mere pragmatic virtue of causal models to the effect that, if easily available, parsimonious

models are to be preferred over more complex ones, but if parsimony comes at a high price

it can be dispensed with.

This paper shows that intermediate (and conservative) solution formulas cannot be

causally interpreted. Subject to e.g. Mackie’s (1974) INUS-theory of causation, to which

representatives of QCA explicitly subscribe (cf. e.g. Mahoney and Goertz 2006; Schneider

and Wagemann 2012), causes are Boolean difference-makers for their effects. Yet, ele-

ments of solution formulas that can be eliminated without relationships of sufficiency and

necessity thereby being affected make no difference to corresponding outcomes and, thus,

do not cause the latter. That is, parsimony of solution formulas is much more than a mere

pragmatic virtue of causal models; rather, there exists a tight conceptual connection between

parsimony and causality. Only maximally parsimonious solution formulas can represent

causal structures. Accordingly, researchers that want to apply QCA for the purpose of causal

data analysis or of testing causal hypotheses must not content themselves with intermediate

solution formulas.3

The structure of the paper is as follows. In section 2, I review the details of the theory

that accounts for causation in terms of Boolean difference-making and that underlies all

Boolean causal reasoning. On the basis of an inverse search that puts the available search

strategies of QCA to the test, section 3 then shows that only the most liberal strategy—which

maximizes parsimony, yet tends to call for unjustifiable simplifying assumptions—succeeds

in uncovering causal dependencies as defined by that theory. It follows that users of QCA

face a dilemma: either they introduce untenable simplifying assumptions and, thereby, max-

imize parsimony and secure the causal interpretability of resulting solution formulas, or

they base their inferences on a sound and tenable assumptive basis and, thereby, limit the

applicability of QCA to non-causal purposes. In section 4, it will turn out that the culprit

for this dilemma is QCA’s reliance on Quine-McCluskey optimization (Q-M) to eliminate

redundancies from solution formulas. The paper ends by arguing that by replacing Q-M

by a different optimization algorithm—one that is custom-built for the discovery of causal

structures—so-called Coincidence Analysis (CNA) (cf. Baumgartner 2009a; 2009b) suc-

ceeds in consistently maximizing parsimony without reliance on untenable assumptions.

2 Causes as Boolean Difference-Makers

Before we can investigate which search strategies of QCA yield solution formulas that can

be taken to reproduce causal structures, we have to clarify what causation or causal depen-

dence means in the context of Boolean data analysis. Very roughly put, the (philosophical)

literature concerned with analyzing causal notions provides two different types or traditions

of theories of causation: the first type is constituted by so-called difference-making theo-

ries and the second by transference and power theories. Prototypical examples of the first

type are Suppes (1970), Lewis (1973), Mackie (1974), or more recently Woodward (2003);

3 There also exist non-causal applications of QCA. For instance, Mendel and Korjani (2012) use QCA as a

method for linguistic summarization, which is a data mining approach to extract patterns from databases. The

goal of this approach is not to generate causal knowledge, causal explanations, or to test causal hypotheses;

rather, it seeks to better understand and communicate about data. For such a purpose, solution formulas that

are not maximally parsimonious may be very useful. Moreover, intermediate solutions may be informative

with respect to correlations and associations among investigated factors; cf. e.g. Grant, Morales, and Sallaz

(2009, 344-345) who very explicitly abstain from causally interpreting intermediate solutions (though for

different reasons than the ones advanced in this paper).
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well-known examples of the second type are Dowe (2000) or Mumford and Anjum (2011).4

In a nutshell, difference-making theories stipulate—as their name suggests—that causes are

characterized by their property of making some sort of difference to their effects, where the

relevant sort of difference-making is variably specified in different theories. Power theories,

by contrast, take the characteristic feature of causal dependencies to consist in some sort of

physical relation connecting causes to their effects, for instance, the transference of energy

or momentum from the cause to the effect or the cause’s exertion of power over the effect.

It is clear that Boolean methods of data analysis do not scrutinize the physical rela-

tion between causes and effects. Consequently, they do not search for causal dependencies

as defined by transference or power theories. Rather, Boolean methods search for causal

dependencies as defined by difference-making theories. More specifically, as their primary

search targets are sufficient and necessary conditions, Boolean methods must be seen to

presuppose a notion of causation according to which causes are difference-makers within

sufficient and necessary conditions of their effects. The most well-known theory in that tra-

dition is Mackie’s (1974) so-called INUS-theory of causation. Subject to that account, a

cause is an INUS-condition of its effect, viz. an insufficient but non-redundant part of an

unnecessary but sufficient condition of the latter (Mackie 1974, 62). That is, a cause or, in

Mackie’s terminology, a causally relevant factor A for an effect E (typically) is neither it-

self sufficient nor necessary for E; rather, relative to some fixed configuration of background

conditions, A is a non-redundant element of a configuration of factors, say, ABC which, in

turn, is sufficient but not necessary for E. That is, there may be alternative configurations,

say, DGH and JKL that can likewise cause E—even in the absence of ABC. Relative to

that theoretical background, A being a difference-maker for E amounts to this: there exist

circumstances φ, viz. when BC is given and neither DGH nor JKL are given, such that A

makes a difference to the occurrence of E in φ, i.e. E occurs in φ if, and only if, A occurs in

φ. In other words, in circumstances of type φ, A is a means to control or manipulate E: by

bringing about (suppressing) A, E is brought about (suppressed).

In order to see that only the most parsimonious solution formulas of Boolean meth-

ods succeed in capturing causation as defined along these lines, we have to delve more

deeply into the conceptual details of a theory that spells out causation in terms of Boolean

difference-making. As a brief reminder, let me begin with the relevant formal background

from Boolean algebra (for more details cf. Thiem et al. ms). The core Boolean operation

that allows for representing (deterministic) causal dependencies is the implication or sub-

set operator, which in the context of Boolean methodologies is alternatively expressed in a

logical (‘→’) or set-theoretical (‘⊂’) formalism (cf. Schneider and Wagemann 2012, part I).

For mere conventional reasons I shall in the following give preference to the logical mode of

expression. On the basis of the implication operator the two core notions of Boolean causal

modeling can then be defined: the notions of sufficiency and necessity. A is said to be suffi-

cient for E if, and only if, it holds that if A is the case, then E is the case as well, or formally

A → E. By contrast, A is necessary for E if, and only if, it holds that if E is the case, then A

is the case as well, or formally E → A. Furthermore, that A is both sufficient and necessary

for E is expressed with the biconditional operator ‘↔’: A ↔ E.

As causal structures in the world we live in hardly ever involve only one cause and

one effect, three further Boolean operations are needed to capture the whole complexity of

ordinary causal structures: conjunction, disjunction and negation. A causally relevant factor

A typically only determines its effect E if other factors as B and C are given as well. I shall

4 For a recent illustration of the debates between these two theoretical camps see Glynn (2013) and Ney

(2009).
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subsequently express conjunction, viz. “and”, by mere concatenation of factors: ABC → E.

Moreover, an effect E can be brought about along alternative causal routes, for instance by

the configuration ABC or by DGH or by JKL. Disjunction, viz. “or”, is expressed by ‘∨’:

ABC ∨DGH ∨ JKL → E. Finally, not only the presence but also the absence of a factor

may be causally relevant or may be caused, that is, causally relevant factors and effects must

be negatable. The negation of A, i.e. ‘not A’, will be written A. Overall, thus, an exemplary

Boolean representation of a more realistically complex causal structure would be this:

ABC ∨DGH ∨ JKL ↔ E (1)

(1) represents a causal structure such that the effect E has exactly three alternative complex

causes: ABC, DGH , JKL. According to (1), each of these conjunctions is sufficient for E

and their disjunction is jointly necessary for E, meaning that E does not occur if not at least

one of its three alternative causes is given.5

However, only a very small subset of all dependencies of sufficiency and necessity ac-

tually reflect causal dependencies. The reason is that the relationships of sufficiency and

necessity are monotonic, meaning that when A is sufficient for E, it follows (on mere logi-

cal grounds) that AX is also sufficient for E, and when A is necessary for E, it follows that

A ∨ X is also necessary for E, where X in both cases stands for any arbitrary factor. As

a consequence, most complex sufficient and necessary conditions involve a host of factors,

whose removal from the conditions does not change their status as sufficient and necessary

conditions. Factors that can be removed from conditions such that the latter’s sufficiency

and necessity remains unaltered are redundant and, thus, are not Boolean difference-makers

and, therefore, are not causes.

In the following I illustrate the requirement of removing all redundant elements from

sufficient and necessary conditions before the latter can be causally interpreted, first, with a

concrete example from social science and, second, with an abstract common cause structure.

Suppose that a high GNP (G) in combination with strong left parties (L) and a low ratio of

foreign population (F ) are jointly sufficient for a high level of education (E), i.e. GLF → E.

In words: whenever a country has a high GNP, strong left parties, and a low ratio of foreign

population, it also has a high level of education. If that holds, it of course also holds that

whenever a country has a high GNP, strong left parties, a low ratio of foreign population, and

a blond prime minister (B), it also has a high level of education, or formally: GLFB → E.

Hence, even though the prime minister’s hair color makes no difference whatsoever to E

and is thus redundant for E, B may be part of a sufficient condition of E. The fact that

GLFB clearly is no complex cause of E shows that being part of a sufficient condition

is not sufficient for being a cause. GLFB is not a cause of E because B can be removed

without the remaining condition GLF losing its sufficiency for E.

Next, consider the common cause structure depicted in graph (a) of figure 1. In this

structure, C and E are two parallel effects of the common cause A. In addition, there exists

one further alternative cause for C and E each: B for C and D for E. For simplicity, all

5 Usually, in the prose around solution formulas in QCA studies only necessary conditions that consist

of single factors are explicitly labeled “necessary conditions”. (A commendable exception is Bol and Luppi

(2013), who systematize the search for complex necessary conditions within the QCA framework.) In fact,

however, every QCA solution formula that identifies complex sufficient conditions for the absence of an

effect is tantamount to a solution formula that identifies a complex necessary condition for the presence of the

effect (by contraposition), and vice versa. For instance, a formula that identifies AC and D as two alternative

sufficient conditions for E is logically equivalent to a formula that identifies AD∨CD as necessary condition

for E. Disjunctive necessary conditions can be interpreted as imposing restrictions on the space of alternative

causes of an effect: in the structure represented by (1), E has exactly three alternative causes.
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(a)

case A B C D E

c1 1 1 1 1 1

c2 1 1 1 0 1

c3 1 0 1 1 1

c4 1 0 1 0 1

c5 0 1 1 1 1

c6 0 1 1 0 0

c7 0 0 0 1 1

c8 0 0 0 0 0

(b)

Fig. 1 Graph (a) depicts an ordinary common cause structure, and table (b) lists all the configurations of the

involved factors that are compatible with the structure in (a), i.e. (b) is the (ideal and complete) truth-table for

(a).

five factors in that structure are assumed to be binary. Table (b) then lists all the empirically

possible configurations of these factors. That means there are 8 types of cases that can be

found empirically, given that the behavior of the five factors is regulated by the structure in

graph (a). For instance, all five factors can be given in combination (case c1) or D can be

absent when all the other factors are present (c2), and so forth.

Let us now inquire what combinations of the factors in the set {A,B,C,D} are sufficient

and/or necessary for E. Without drawing on Boolean methods it can easily be seen that in

table (b) it holds that whenever A is given (cases c1 to c4) and whenever D is given (c1, c3,

c5, c7), E is given as well. Hence, A and D are both individually sufficient for E; and as

these sufficient conditions are constituted by single factors, they do not involve redundancies

either. At the same time, though, table (b) reveals that the combination BC is also sufficient

for E: whenever BC is given (c3, c4), E is given as well. Or formulated in causal terms, in

cases when C is given without B, A must be given to account for C, for no effect occurs

without any of its causes. But since A determines E in structure (a), it follows that BC is

sufficient for E as well. Moreover, no element of BC can be removed without the condition

losing its sufficiency for E: C alone is not sufficient for E, because in c6 C is given while

E is not; and B alone is not sufficient for E, because in c8 B is given while E is not. That

is, BC does not contain any redundant elements.

A, D and BC are all of the redundancy-free sufficient conditions that E has in table (b).

Furthermore, all cases featuring E also feature A or D or BC; or differently, whenever E is

given, so are A or D or BC, which means that the disjunction A ∨D ∨BC is necessary for

E. Overall, the following holds:

A ∨D ∨BC ↔ E (2)

Even though (2) features sufficient conditions of E that have no redundant elements, (2)

is a Boolean expression that does not reflect a causal structure, for BC is not a complex

cause of E in structure (a). The reason is that the necessary condition A∨D ∨BC contains

a redundant disjunct, viz. BC. If BC is removed, the remaining disjunction A ∨ D is still

necessary for E, for it holds that whenever E is given in table (b), so is A or D:

A ∨D ↔ E (3)

By contrast, the necessary condition of E contained in (3), viz. A∨D, is free of redundancies.

A itself is not necessary for E because in cases c5 and c7 E is given while A is not; neither

is D alone necessary for E because in cases c2 and c4 E is given and D is not. Indeed,
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(3) is a Boolean expression that corresponds to a causal structure, for A and D are exactly

the two alternative causes of E in structure (a). All of this shows that Boolean expressions

only reflect causal structures if all redundancies are rigorously removed from both sufficient

and necessary conditions. Or in other words, if a Boolean expression contains redundant

elements, it does not reflect a causal structure.

To further specify the account of difference-making that is relevant for Boolean methods

of causal inference, let us introduce the notions of a minimally sufficient and a minimally

necessary condition. A conjunction as AB that is sufficient for an outcome E is minimally

sufficient for E if, and only if, no proper part of AB is itself sufficient for E, where a proper

part of a conjunction is that conjunction reduced by at least one conjunct. That is, AB is

minimally sufficient for E if, and only if, AB is sufficient for E and neither A nor B are

themselves sufficient for E. Analogously, a disjunction as A ∨ B that is necessary for an

outcome E is minimally necessary for E if, and only if, no proper part of A ∨ B is itself

necessary for E, where a proper part of a disjunction is that disjunction reduced by at least

one disjunct. That is, A∨B is minimally necessary for E if, and only if, A∨B is necessary

for E and neither A nor B are themselves necessary for E.

For factors that are contained in minimally sufficient and necessary conditions of an

outcome there exist configurations in which these factors make a difference to the occurrence

of that outcome. For example, compare the configurations c2 and c6 in table (b): in c2 the

factor A is present and in c6 it is absent, whereas all other factors apart from the outcome

E remain the same in both c2 and c6; in accordance with A, E is present in c2 and absent

in c6. Hence, in c2 and c6 the presence and absence of A makes a difference to the presence

and absence of E. For redundant elements of sufficient and necessary conditions, no such

difference-making configurations exist. All of this yields the following account of Boolean

difference-making:

Boolean difference-making (BD): A factor A is a Boolean difference-maker of an out-

come E if, and only if, A is contained in a minimally sufficient condition AX of E such

that AX, in turn, is contained in a minimally necessary condition of E.

Being a Boolean difference-maker is necessary but not sufficient for being a cause.

Boolean difference-making is relative to analyzed data: for instance, C is not a Boolean

difference-maker of E in table (b), but in a table that results from (b) by adding, say,

the configuration ABCDE the factor C would be such a difference-maker. As is well-

known, analyzed data may fail to reflect causal structures for various reasons: the data may

be confounded by unmeasured causes, it may be miscalibrated, too fragmentary, or result

from measurement errors etc. Relative to deficient data, factors may be Boolean difference-

makers of an outcome E without being causes of E. Data deficiencies are typically exposed

by expanding the set of analyzed factors in further studies of the same phenomenon, by

conducting robustness tests, by recalibrations, remeasurements, or by mere replication stud-

ies etc. Only Boolean difference-makers in data that meet required quality standards can

reliably be inferred to be causes (cf. Baumgartner 2008; 2013).

Of course, due to the fact that in contexts of causal data analysis researchers typically

investigate causal structures which are not completely known, compliance with those quality

standards often cannot be conclusively ascertained. Accordingly, inferring that A causes E

normally involves an inductive risk, i.e. causal inferences are prone to error (which hopefully

are corrected in follow-up studies). Even though, Boolean difference-making as spelled out

in (BD) is not sufficient for causation, it corresponds to the most important Boolean con-

straint causes have to comply with. Factors that do not satisfy (BD) can be excluded as

causes; correspondingly, Boolean solution formulas that contain (BD)-violating factors are
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not amenable to a causal interpretation. By contrast, a causal interpretation of solution for-

mulas that are exclusively composed of factors complying with (BD) and that are inferred

from competently collected data is (inductively) warranted. I shall say that such solution

formulas are causally interpretable.

I do not intend to claim here that all causal structures empirically manifest themselves in

terms of Boolean difference-making. In fact, according to so-called causal pluralism (cf. e.g.

Psillos 2009), difference-making and power theories of causation do not mutually exclude

each other, rather, they simply highlight different aspects of causation. What I do intend to

claim, though, is that Boolean difference-making is the feature of causation that is tracked by

Boolean methods of causal inference as QCA. Hence, whoever applies a Boolean method,

searches for causal dependencies that comply with (BD). To uncover causal structures that

do not exhibit relations of Boolean difference-making, recourse to different methods must

be made.

To sum up, this section has revealed that only redundancy-free sufficient and necessary

conditions feature Boolean difference-makers and, thus, comply with the core Boolean cri-

terion for causation. In consequence, a Boolean method of causal data analysis must seek

for minimally sufficient and minimally necessary conditions of scrutinized outcomes.

3 Inverse Search

This section aims to show that in order for Boolean methods to output solution formulas

that are causally interpretable parsimony must be maximized. Only maximally parsimonious

solution formulas identify minimally sufficient and minimally necessary conditions and, as

only the latter can correspond to causal conditions, only maximally parsimonious solution

formulas can mirror causal structures.

To this end, I will perform so-called inverse searches, which—as the label suggests—

reverse the order of causal discovery as it is normally conducted in scientific practice. An

inverse search involves three steps: (i) a causal structure σ is presumed to be given, (ii)

artificial data δ is generated by letting the factors in σ behave/operate in accordance with

σ, (iii) δ is processed by a method of causal data analysis with the aim of recovering σ. If,

and only if, the scrutinized method finds σ, the inverse search is successfully completed.

Even though successful inverse searches are standardly implemented as quality benchmarks

for methods of causal discovery (cf. e.g. Spirtes, Glymour, and Scheines 2000; Pearl 2000),

they are hardly ever conducted in the literature on Boolean data analysis.

In real-life contexts of causal discovery there are manifold reasons as to why methods

of data analysis fail to find the causal structure that actually underlies processed data. A re-

searcher may fail to properly control for background influences, to the effect that collected

data is too noisy, that is, confounded by unmeasured causes of an investigated outcome.

Or if a process is being analyzed whose relevant factors—for whatever reasons—cannot be

manipulated or influenced artificially, the number or diversity of data points that nature hap-

pens to provide may be wanting. Or the selection, calibration, or measurement of analyzed

variables may be flawed, and so forth. Yet, all of these reasons for failing to find causal struc-

tures are due to problems of data collection and pre-processing, and thus to a task that must

be completed prior to the actual analysis of the data. No method can be expected to success-

fully uncover causal structures based on fragmentary, confounded, or otherwise flawed data.

Outputs of procedures of causal data analysis are only as good as the analyzed data.

Therefore, in order to evaluate causal inference procedures and corresponding search

strategies, problems of data collection/pre-processing must be factored out by assumption
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(or idealization). The tool of an inverse search lends itself particularly well to this purpose.

Based on the causal structure that is presupposed as given in an inverse search, we can

artificially generate data that is free of confounding noise, diversity limitations, selection

bias or calibration and measurement errors, that is, we can produce ideal data. Against such

an idealized background, a failure to find the structure based on which the data was generated

can then be directly and unambiguously ascribed to a deficiency in the implemented method

or search strategy.

The previous section has already laid the basis for an inverse search that avoids prob-

lems of data collection. Figure 1 provides a causal structure with a list of all and only the

configurations of the factors involved in that structure that can possibly be observed relative

to a homogenous (or fixed) setting of unmeasured background causes. Also, there are no

rows featuring one and the same configuration of conditions combined with both the pres-

ence and the absence of outcome E.6 We are hence justified in presuming a proper variable

calibration and the absence of data confounding and measurement error. Moreover, we can

assume that for all configurations in table 1(b) we have a sufficient amount of cases in our

raw data to meet inclusion cut-offs. All in all, we shall assume that table 1(b) represents an

ideal truth-table for a Boolean analysis—to the effect that an adequate Boolean method of

data analysis must be able to find the causal dependencies in structure 1(a) based on table

1(b). Or differently, if a method or search strategy does not find the causes of E based on

table 1(b), it is inadequate qua procedure of causal inference.

For the purposes of an inverse search the interpretation of the factors involved in struc-

ture 1(a) does not matter. All that matters is that the behavior of the factors in the set

V = {A,B,C,D, E} is assumed to be regulated by structure 1(a). Nonetheless, in order

to substantiate that a structure as 1(a) is very commonplace in the field of social sciences,

the following would be a viable interpretation of the factors in V:

A: high share of native population D: high GNP

B: strong unions E: high level of education

C: strong left parties

(I)

If (I) constitutes our research context, the relevant question we are going to want to answer

in the following is whether a high level of education (E), say, in western democracies, is

caused only be a high share of native population (A) and, alternatively, a high GNP (D) or

whether strong unions (B) and strong left parties (C) causally contribute as well. The correct

answer, according to the assumed structure in figure 1(a) is the former option, that is, A and

D are the only two alternative causes of E.

As anticipated in the introduction, the standard methodological framework for Boolean

causal data analysis, QCA, provides different search strategies whose main differences con-

cern the way in which redundant elements are removed from solution formulas. More specif-

ically, Ragin and Sonnett (2005) distinguish between a conservative strategy S1, an inter-

mediate strategy S2, and a liberal strategy S3. We subsequently apply these three search

strategies to table 1(b) with the aim of recovering the causes of E given in structure 1(a). It

will turn out that only S3 successfully completes this inverse search.

6 In the QCA literature, two rows ci and ch in a truth-table such that one and the same configuration of

conditions is combined with the presence of the outcome in ci and with its absence in ch are often very

misleadingly called “contradictory” (cf. e.g. Rihoux and De Meur 2009; Schneider and Wagemann 2012,

§5.1; Rubinson 2013). In fact, however, such a pair of rows is far from being contradictory, rather, it merely

entails that the relevant configuration of conditions is neither sufficient for the presence nor for the absence

of the outcome.
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As structure 1(a) and table 1(b) involve binary variables only, we can confine our analy-

sis to crisp-set QCA (csQCA). I assume that the reader is familiar with the procedural details

of csQCA (cf. Ragin 1987; Rihoux and De Meur 2009). Still, to clearly understand why a

search strategy does or does not complete our inverse search, it is required that we briefly

review the computational core of QCA that is concerned with removing redundancies from

sufficient and necessary conditions, i.e. the procedural part of QCA whose function it is to

turn mere sufficient and necessary conditions into causally interpretable sufficient and nec-

essary conditions. Both in csQCA and fuzzy-set QCA (fsQCA) this core is constituted by

Quine-McCluskey optimization (Q-M), which is a procedure to minimize Boolean expres-

sions standardly used in electrical engineering or digital logic design (cf. Quine 1959). The

operational details of Q-M are best presented by means of concrete examples.

Let us hence eliminate redundancies from an exemplary sufficient condition of E in ta-

ble 1(b) by virtue of Q-M. The configuration ABCD, which is combined with E in row c1,

is sufficient for E, because table 1(b) does not contain a row where ABCD is combined

with E. To determine whether ABCD contains redundancies, Q-M parses the input table

1(b) to find other rows that accord with c1 in regard to the outcome and all other factors

except for one. Such a row with exactly one difference is easily found. In c2, E is combined

with the configuration ABCD, which accords with ABCD in all factors except for D. The

pair of rows 〈c1, c2〉 reveals that, in the context of ABC, E occurs both if D is given and

if it is not. In that context, D makes no difference to E and is hence redundant. Therefore,

Q-M eliminates D from ABCD and D from ABCD to yield ABC. Similarly, the con-

figuration in row c3 coincides with the one in row c4 in all factors except for D which is

present in c3 and absent in c4. Consequently, Q-M removes D and D from the correspond-

ing sufficient conditions of E to yield ABC. Next, since a comparison of the two sufficient

conditions, ABC and ABC, that result from the two previous minimization steps reveals

that B makes no difference to E in contexts that feature AC, Q-M continues to eliminate B

and B, respectively—and so forth, until no further redundancies are found.

The feature of this minimization procedure that is of crucial importance for our pur-

poses is that Q-M only eliminates conjuncts of a sufficient condition if the corresponding

truth-table actually contains a pair of rows that accord with respect to the outcome as well

all factors except for one. If such a pair of rows does not exist for a particular sufficient con-

dition, the latter cannot be further minimized. To facilitate later reference to this restriction,

I label it the one-difference restriction.

In light of the one-difference restriction, eliminating all redundancies from sufficient

conditions by means of Q-M presupposes that the analyzed truth-table exhibits high diver-

sity with respect to the logically possible configurations of potential cause factors (condi-

tions). Consider, for example, row c7 of table 1(b) which features E in combination with

the configuration ABCD. As there is no row where ABCD is combined with E, ABCD

is sufficient for E. However, table 1(b) does not contain a row that accords with c7 with

respect to the outcome and all conditions except for one. In consequence, although it can

easily be seen (even without algorithmic help) that all rows of table 1(b) that feature D also

feature E, i.e. that D itself is sufficient for E, Q-M cannot eliminate the redundant ABC

from ABCD based on the configurations contained in table 1(b).

A table as 1(b) that does not comprise all 2n logically possible configurations of n

conditions of an investigated outcome is called limitedly diverse in the QCA terminology

(Ragin 2000, 139). Logically possible configurations that are missing from analyzed truth-

tables are termed logical remainders. In cases of limited diversity, QCA offers the researcher

the possibility to counterfactually add logical remainders based on her available theoretical

knowledge about an investigated process. The three aforementioned QCA search strategies
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essentially differ with respect to how much restrictions they impose on the counterfactual

introduction of remainders. The conservative strategy S1 prohibits the introduction of coun-

terfactual configurations altogether, the intermediate strategy S2 allows for the introduction

of so-called easy (Ragin 2008a) or tenable (Schneider and Wagemann 2012) counterfac-

tuals, and according to the liberal strategy S3 any counterfactuals, easy/tenable and dif-

ficult/untenable ones, may be introduced that contribute to maximizing parsimony of re-

sulting solution formulas. Counterfactuals that are introduced for the purpose of increasing

parsimony are also called simplifying assumptions.

S1 and S3 are precisely defined search strategies whose algorithmic implementation is

straightforward. The concrete blueprint for S2, by contrast, depends on what counterfactual

configurations are deemed easy/tenable in a given research context. The easy/tenable coun-

terfactuals are those remainders that are compatible with the available theoretical knowl-

edge, the difficult/untenable counterfactuals are those that are not compatible therewith.

That is, the distinction between easy/tenable and difficult/untenable counterfactuals is not

stable but varies with the epistemic context. Moreover, there are various variants of S2 avail-

able in the literature (Schneider and Wagemann 2012, chaps. 6, 8): (i) S2 of the so-called

Standard Analysis (SA), (ii) S2 of the Enhanced Standard Analysis (ESA), (iii) S2 of the

Theory-Guided Enhanced Standard Analysis (TESA). Their main differences concern the

complexity of added counterfactuals, the manner in which they are brought to bear—as so-

called directional expectations or as truth-table rows—, and at what point within a complete

QCA of a truth-table these simplifying assumptions are introduced. These variations will

not be relevant for our purposes, because it will turn out that variants of S2 only pass our

inverse search test when they are equivalent to S3.

To see this, let us begin by applying S1 to table 1(b). When processed in terms of S1,

QCA issues this solution formula:7

AC ∨BCD ∨ ABCD ↔ E (4)

As 1(b) is an ideal and noise-free truth-table, (4) is a perfect Boolean solution formula, that

is, it has a maximal consistency and coverage of 1 (cf. Ragin 2006), which I express by

means of the biconditional operator in (4).

(4) illustrates what we anticipated already: if no remainders are counterfactually added

to table 1(b), Q-M does not succeed in eliminating all redundancies. In particular, no re-

dundancies at all can be removed from ABCD. Due to the fact that not all redundancies

are eliminated, (4) does not identify Boolean difference-makers of E. Although there do not

exist any circumstances in which B and C make a difference to E, they appear as parts of

sufficient conditions of E and they are contained in a (disjunctive) necessary condition of E.

In consequence, (4) does not adequately represent the causes of E in structure 1(a). A causal

interpretation of (4) would entail that both C and B causally contribute to E, where in fact

they do not. Expressed in terms of research context (I), even though strong left parties and

unions are not causes of a high level of education in the presupposed structure 1(a), a causal

interpretation of (4) would erroneously entail that the former cause the latter after all. In

sum, the solution formula of S1 must not be causally interpreted.

By contrast, S3 succeeds in finding the true causes of E in structure 1(a) based on table

1(b). The solution formula for outcome E produced by S3 is this:

A ∨D ↔ E (5)

7 The QCA solution formulas in this article were built using the R-implementation of QCA by Alrik Thiem

and Adrian Duşa, version 1.0-5 (Thiem and Duşa 2013a; 2013b).



Parsimony and Causality 11

case A B C D E

c∗
9

0 0 1 1 1

c∗
10

0 1 0 1 1

c∗
11

1 0 0 0 1

c∗
12

1 0 0 1 1

c∗
13

1 1 0 0 1

c∗
14

1 1 0 1 1

[c15] 0 0 0 0 1

[c16] 0 0 1 0 1

Table 2 List of logical remainders for outcome E in table 1(b). Configurations c∗
9

to c∗
14

(where “∗” marks

counterfactuality) are required by S3 in order to eliminate all redundancies from sufficient and necessary

conditions of E. Configurations [c15] and [c16] are irrelevant.

By counterfactually adding any remainders that contribute to maximizing parsimony, Q-

M manages to eliminate all redundancies from sufficient and necessary conditions of E and,

thus, to identify Boolean difference-makers as defined in (BD). Moreover, as 1(b) contains

optimal data, a causal interpretation of (5) is warranted; it reveals exactly the two alternative

causes, A and D, that E actually has in the underlying structure 1(a). Against the background

of research context (I), S3 correctly determines that a high share of native population and a

high GNP are the two alternative causes of a high level of education. S3 hence successfully

completes our inverse search.

To this end, S3 counterfactually introduces the remainders given in rows c∗9 to c∗14 of ta-

ble 2. Those are the configurations that Q-M needs in order to find the correct causal model

(5). That, in turn, means that variants of the intermediate strategy S2 only find solution for-

mula (5) if they likewise counterfactually add all configurations c∗9 to c∗14. If any of those

configurations is deemed difficult/untenable and, thus, not introduced by S2, the latter out-

puts a solution formula with at least some redundancies, i.e. with at least some factors that

are not Boolean difference-makers and, hence, not causes. As indicated above, whether a

configuration is difficult/untenable or not depends on the theoretical background knowledge

that is available in a given research context—and available background knowledge may vary

from context to context.

However, note that we started our inverse search with ideal and, in particular, complete

data. Table 1(b) contains all empirically possible configurations of the factors in the set

V = {A,B,C,D, E}, given that their behavior is regulated by the structure in figure 1(a). In

other words, most remainders in table 2 are deemed empirically impossible by structure 1(a).

To illustrate, consider configuration c∗10, where B is given but C is not. This configuration

is not compatible with structure 1(a) because, according to the latter, B is a sufficient cause

of C, meaning that whenever B is given, so is C. Or in c∗11 to c∗14 A is given without

C, even though structure 1(a) entails that A is sufficient for C. According to the standard

analysis of the notion of knowledge in terms of justified true belief (cf. Ichikawa and Steup

2013), nothing that is impossible can possibly be known. Hence, a researcher analyzing

structure 1(a) cannot have theoretical knowledge about that structure that would identify

configurations c∗10 to c∗14 as easy/tenable counterfactuals.

The only remainder in table 2 that might still pass as an easy/tenable counterfactual and

that contributes to eliminating redundancies is c∗9. The rationale for such an assessment is as

follows. The data in table 1(b) is assumed to be collected against a homogenous background

of unmeasured causes of the effects in structure 1(a). That means, in particular, that causes

of C that are not contained in the set V are assumed to be absent in the background against

which the data in table 1(b) is collected. But that does not exclude that there might be
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different background configurations of unmeasured causes such that C is present without

any of its causes in V being present. Hence, it might be that A and B are not the only

causes of C. In consequence, configurations featuring C in combination with AB might be

considered empirically possible against a different causal background than the one behind

table 1(b), such that remainder c∗9 could be deemed easy/tenable. If S2 counterfactually

introduces c∗9 , it outputs this solution formula:

AC ∨ CD ∨ABD ↔ E (6)

As can easily be seen, (6) fares a bit better than (4), viz. the output of S1. Nonetheless,

the sufficient and necessary conditions in (6) still feature numerous elements that are not

Boolean difference-makers and, thus, not causes of E. A causal interpretation of (6) would

erroneously entail that C and B causally contribute to E. Overall, a variant of S2 that coun-

terfactually adds only a proper subset of the remainders c∗9 to c∗14 to table 1(b) fails to find

structure 1(a) and, hence, does not pass our inverse search test.

As the distinction between easy/tenable and difficult/untenable counterfactuals cannot

be conclusively fixed, friends of a variant of S2 might insist that all relevant remainders c∗9 to

c∗14 in table 2 could be deemed easy/tenable, for the causal structure regulating the behavior

of the factors in V could have been different. They might hold that causal laws governing the

world we live in do not hold of necessity. Of course, if the causal dependencies among the

factors in V had been different, the latter could have been configured in any logically pos-

sible manner. Whether causal laws hold of necessity or not is a deep metaphysical question

on which I do not want to dwell here. All that matters for our current purposes is that, if any

logical remainder that S3 needs to maximize parsimony is considered difficult/untenable, the

solution formulas output by variants of S2 fail to identify Boolean difference-makers, that

is, causes. The output of S2 is causally interpretable only if it is identical to the output of S3.

Or differently, S2 is a strategy for causal discovery only if it is equivalent to S3, which—as

we have seen above—dispenses with the problematic distinction between easy/tenable and

difficult/untenable counterfactuals altogether.

The only QCA search strategy that, if applied to non-flawed data, is guaranteed to out-

put solution formulas that represent causal structures is the liberal strategy S3. In light of

section 2, this result is not surprising. Section 2 has shown that parsimony is not simply a

pragmatic or aesthetic virtue of QCA solution formulas, which can be dispensed with if it

comes at a high price. Rather, there is a tight conceptual interdependence between parsimony

and causality. According to the notion of causation presupposed by Boolean search meth-

ods, causes are Boolean difference-makers of their effects. Only factors that are contained

in minimally sufficient and minimally necessary conditions are Boolean difference-makers,

and only maximally parsimonious solution formulas feature minimally sufficient and min-

imally necessary conditions. That means only maximally parsimonious solution formulas

are causally interpretable. If QCA is applied in order to discover causal dependencies or to

test causal hypotheses, neither the conservative search strategy S1 nor any of the available

variants of the intermediate strategy S2 must be implemented; rather, recourse to S3 is called

for.

4 Parsimony vs. Tenability

In light of the fact that causal data analysis, in general, and the testing of causal hypotheses,

in particular, are among the main purposes for which QCA is currently being applied in

social scientific practice the question arises as to why the most liberal strategy S3, which was
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the principal search strategy Ragin suggested in (1987), was ever supplemented by further

strategies. In fact, in recent years it has become more and more common that intermediate

solution formulas are presented as the preferable QCA outputs (cf. e.g. Ragin 2008b, 171-

172).8

The main reason for the widespread turning away from maximally parsimonious solu-

tions, as e.g. Schneider and Wagemann (2012, chs. 6, 8) convincingly show, is that QCA’s

liberal strategy S3 faces a serious problem. In order to eliminate all redundancies, S3 is

regularly forced to introduce untenable simplifying assumptions, i.e. configurations that are

empirically impossible because they contradict causal or logical laws (or simply our gen-

eral world knowledge). We have already seen an instance of this problem in the previous

section: even though A is a sufficient cause of C in structure 1(a), Q-M—due to the built-in

one-difference restriction—can only reveal that C is not a Boolean difference-maker of E

in table 1(b) if the configuration AC is counterfactually introduced, which however is deter-

mined to be impossible by the very causal structure under investigation.9 Or Schneider and

Wagemann’s (2012, ch. 8) “pregnant man” is another telling example: in a study that inves-

tigates how gender, taking the pill, and being pregnant causally contribute to, say, suffering

from thrombosis, S3 will at some point be forced to counterfactually introduce the combi-

nation of being a man and being pregnant, which of course is a biological impossibility.

Clearly, a method for causal data analysis that infers a causal structure based on coun-

terfactual data points that contradict the very structure under investigation or that is forced

to assume what is known to be impossible has more than an air of fishiness. Such a method

runs the risk of complete trivialization. From assumptions that cannot possibly be true, i.e.

that are necessarily false, everything can be inferred (ex falso quodlibet). More concretely,

from the assumption that a man is pregnant it can both be inferred that taking the pill is a

sufficient cause of thrombosis and that taking the pill is not a sufficient cause of thrombosis.

A necessarily false assumption entails any arbitrary causal model (as well as the negation

thereof). That is, on pain of trivialization, no search strategy for causal data analysis must be

allowed to introduce necessarily false simplifying assumptions. Yet, to repeat it once again,

in order to eliminate all redundancies from solution formulas, Q-M regularly forces S3 to

do just that.

Many studies concerned with developing or applying QCA acknowledge a tension be-

tween parsimony and tenability of simplifying assumptions. That, however, is a gross un-

derstatement. When applied as a method for causal data analysis, the polarity between par-

simony and tenability presents QCA with a pressing dilemma: the causal interpretability of

solution formulas calls for maximal parsimony, but in order to reach the latter by means

of Q-M, necessarily false assumptions may be required, which, in turn, trivializes corre-

sponding causal inferences. In view of the fact that the tight conceptual connection be-

tween parsimony, Boolean difference-making, and causation has gone unnoticed so far in

the QCA literature, most authors prioritize tenability of simplifying assumptions over par-

simony without noticing that this maneuver prohibits the causal interpretability of resulting

solution formulas.

8 Without providing any reasons, Rubinson (2013, 2866) rightly deplores the fact that “far too many re-

searchers automatically pick the intermediate solution, assuming that it must be best”. The most straightfor-

ward reason why a general preference of intermediate solutions is deplorable is simply that these solutions

are not (causally) explanatory.
9 A causal dependence among investigated conditions is but one reason why certain remainders turn out

to be impossible—logical, conceptual, or mereological dependencies being further reasons. Thus, the arrow

from A to C in figure 1(a) could also be interpreted in terms of such a non-causal form of dependence.
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However, prioritizing tenability over parsimony and thereby biting the bullet that QCA

can no longer be used as a method of causal data analysis is not the only way out of the

above dilemma. Maximal parsimony and tenability of the assumptive basis of Boolean data

analysis can both be had at the same time. What is responsible for the QCA dilemma be-

tween parsimony and tenability is not some in-principle incompatibility of parsimony and

tenability, rather the culprit is QCA’s reliance on Quine-McCluskey optimization (Q-M),

which imposes the one-difference restriction on data diversity.

Q-M is a procedure that was originally developed for the sole purpose of simplifying

Boolean or truth-functional expressions (formulas). What is crucial for Q-M is that the ex-

pression that is input into the procedure and the expression that is output by the procedure

are logically equivalent, i.e. that input and output have exactly the same meaning (cf. Quine

1959).10 To guarantee for logical equivalence, Q-M is very cautious in eliminating elements

from input expressions—thus the one-difference restriction. Yet, inputs and outputs of a

Boolean procedure of causal inference do not have to be logically equivalent. More con-

cretely, Boolean solution formulas do not have to be logically equivalent with the processed

truth-table. Rather, the former must identify the causes that are operative in the data be-

hind the latter. As a causal inference procedure does not strive for logical equivalence of

input and output but merely for redundancy-freeness of the output, there is no need at all

to draw on Q-M when it comes to eliminating redundancies. On the contrary, since QCA’s

reliance on Q-M is what is responsible for the dilemma between parsimony and tenability,

the proper way around that dilemma is to dismiss Q-M when it comes to identifying Boolean

difference-makers. Solution formulas of Boolean methods must be freed of redundancies by

procedures that do not impose the one-difference restriction.

And, as a matter of fact, there exist alternatives to Q-M. Baumgartner (2009a; 2009b)

proposes so-called Coincidence Analysis (CNA) as an alternative Boolean method of causal

data analysis. CNA shares all of QCA’s basic goals and intentions: it focuses on configura-

tional complexity rather than on net effects (which are scrutinized by standard quantitative

methods), it processes the same kind of data as QCA, i.e. small- to intermediate-N con-

figurational data, and it also searches for causal dependencies defined in terms of Boolean

difference-making.

There are two main differences between CNA and QCA. First, while QCA is designed

to treat exactly one factor Zi as outcome and all other factors in an analyzed truth-table as

potential direct causes of Zi, CNA can treat any number of factors in a set {Z1, . . . , Zi}

as outcomes. That is, CNA does not only search for direct causal dependencies among

Z1, . . . , Zi−1, on the one hand, and Zi, on the other, but also for dependencies among the

conditions Z1, . . . , Zi−1 themselves. Second, CNA does not remove redundant factors on

the basis of Q-M but implements its own minimization algorithm that is custom-built for the

discovery of complex causal structures.

This is not the place to reiterate the procedural details of CNA (cf. Baumgartner 2009a;

2009b; Baumgartner and Epple forthcoming). Let me just briefly indicate the basic ideas

behind CNA’s minimization algorithm. If there exist (deterministic) causal dependencies

among n factors, it follows that not all 2n logically possible configurations of these factors

are also empirically possible. Causal dependencies constrain the range of empirical possi-

bilities. To do justice to this trademark feature of causality, CNA infers causal dependencies

10 In fact, the disjunction of solution terms of the conservative formula (4) is logically equivalent to the

disjunction of configurations in rows c1 to c5 and c7 in table 1(b), which are the configurations that are

sufficient for E in that table. Neither the intermediate nor the parsimonious solution—(6) and (5)—preserve

this logical equivalence.
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not only from the configurations actually contained in truth-tables (as does QCA) but also

from the fact that certain configurations are not contained therein.

To determine whether, say, a complex sufficient condition ABC of a factor E con-

tains redundancies or is minimally sufficient, CNA systematically eliminates conjuncts from

ABC. For each conjunction that results from such an elimination, say for BC, CNA then

parses a corresponding truth-table T to check whether T contains BC in combination with

the absence of E, i.e. E. If T does not contain the configuration BCE, BC is itself sufficient

for E, which means that A is redundant. CNA then proceeds to eliminate the next conjunct

from BC and tests for further redundancies, until no more redundancies are found. By con-

trast, if T contains the configuration BCE, BC is not itself sufficient for E, which means

that A makes a difference to E and is, thus, not redundant. Accordingly, CNA re-adds A to

BC and proceeds to eliminate B, and so forth. That is, while Q-M only eliminates factors

from sufficient conditions if the latter reduced by a respective factor is actually contained in

the truth-table in a way that satisfies the one-difference restriction, CNA eliminates factors

from sufficient conditions if the latter reduced by a respective factor is not contained in the

truth-table in combination with the absence of a corresponding outcome.11

Similarly, to determine whether a complex necessary condition A∨B∨C of an outcome

E is minimally necessary, CNA systematically eliminates disjuncts from A ∨ B ∨ C and

checks for every resulting disjunction, say for B ∨ C, whether it is still necessary for E,

i.e. whether T contains a configuration featuring E without any of the disjuncts in B ∨

C. If the truth-table does not contain such a configuration, B ∨ C is still necessary for E,

which means that the eliminated disjunct A is redundant. Next, B ∨ C is tested for further

redundancies, until no more redundancies are found.

As CNA does not impose the one-difference restriction, limited data diversity in no way

hampers CNA’s capacity to remove all redundancies from sufficient and necessary condi-

tions. By taking into account the configurations not contained in a truth-table, CNA can

systematically test for redundancies without ever being forced to counterfactually introduce

missing configurations.12 In sum, due to its reliance on Q-M, QCA is forced to eliminate re-

dundancies from solution formulas on the basis of problematic counterfactual assumptions

as “Had the configuration ABC occurred, the outcome E would have occurred as well”.

CNA, in contrast, eliminates redundancies from solution formulas based on unproblematic

negative existential claims about an analyzed truth-table T , for example, “The configuration

ABCE is not contained in T ”.13

In this manner, CNA always outputs maximally parsimonious solution formulas that

identify Boolean difference-makers, which—when inferred from competently collected

data—are causally interpretable. Moreover, as CNA does not only search for the dependen-

11 Eliason and Stryker (2009, 126) implement a very analogous minimization idea in the context of a

goodness-of-fit test for fuzzy-set solutions.
12 Note that CNA does not preclude the addition of counterfactual configurations; it just does not require

it. If there are good theoretical grounds for counterfactually supplementing the data, CNA does not prevent

the researcher from doing so. Whereas in the case of QCA it is the algorithmic machinery of the method that

calls for the introduction of counterfactual configurations in order to eliminate all redundancies from solution

formulas, CNA leaves counterfactual considerations entirely up to the researcher’s background theory.
13 The fact that QCA’s S3 and CNA infer the same causal model for outcome E from table 1(b) does

not indicate that corresponding inferences are based on the same or even related assumptions. One and the

same conclusion can be inferred from very different assumptions. For instance, “Socrates is mortal” can be

inferred from the assumptions “Socrates is a man” and “All men are mortal”, or from “All immortal things

are angels” and “Socrates is not an angel”, or from any contradiction, e.g. from “It rains and it does not rain”.

A conclusion is established if it is not only validly inferred from a set of assumptions, but if the latter are

moreover cogently justifiable.
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cies among one designated outcome and the rest of the factors in an analyzed truth-table, but

for all dependencies of minimal sufficiency and necessity among all the involved factors,

it not only correctly uncovers the causes of E in structure 1(a) but also the causes of C.

When given table 1(b) as input, CNA outputs this complex solution formula (where the

concatenation of the atomic solutions for C and E indicates conjunction):

(A ∨B ↔ C)(A ∨D ↔ E) (7)

This result substantiates that QCA’s dilemma between parsimony and tenability of sim-

plifying assumptions does not have to be resolved by dispensing with maximal parsimony

and, thereby, endangering the causal interpretability of inferred solution formulas. By re-

placing Q-M by its own custom-built minimization algorithm, CNA succeeds in maximizing

parsimony on the basis of completely unproblematic and, hence, easily tenable assumptions.

5 Conclusion

The first part of this paper has shown that there is a tight conceptual connection between

parsimony and causality. Parsimony is not simply a pragmatic virtue that facilitates the com-

prehensibility or readability of Boolean causal models and that can be dispensed with if it

comes at a high price. Rather, parsimony is essential for the causal interpretability of models

output by Boolean methods. A factor A is a cause of another factor E only if there exist cir-

cumstances in which the presence and absence of A makes a difference to the presence and

absence of E. Only solution formulas that exclusively feature Boolean difference-makers as

defined in (BD) are amenable to a causal interpretation.

In the second part, I then conducted a simple inverse search revealing that only the most

liberal search strategy S3 of QCA succeeds in correctly identifying Boolean difference-

makers. If inferred from appropriate data, only the most parsimonious solution formulas of

QCA are guaranteed to reflect causation. That is, if QCA is applied, as it often is, to generate

causal explanations, to uncover causal structures or to test causal hypotheses, recourse must

be made to the liberal search strategy S3. However, as is well recognized in the literature,

S3 runs the risk of trivializing causal inferences by introducing untenable, viz. necessarily

false, simplifying assumptions.

Finally, we saw that it is Quine-McCluskey optimization (Q-M) that presents QCA

with the dilemma between parsimony and tenability of simplifying assumptions. A Boolean

method of causal data analysis, as CNA, that does not eliminate redundancies from solu-

tion formulas by means of Q-M manages to maximize parsimony and, thereby, to correctly

uncover causal structures without drawing on untenable counterfactual assumptions.

Let me end by reemphasizing a caveat. None of the findings of this paper shall be taken

to imply that parsimonious Boolean solutions always correctly mirror underlying causal

structures. If the data processed by any Boolean method is deficient, parsimonious solutions

will tend to miss the target just as any other type of solutions. Yet, while conservative and

intermediate solutions are even off-target when they have been generated from ideal data,

to the effect that the corresponding search strategies of QCA under no circumstances output

causally interpretable solutions, there is a positive chance that parsimonious solutions truth-

fully reflect underlying causal structures, viz. whenever the analyzed data is of the required

quality. All in all, thus, studies that aim for causally explanatory solutions must, under all

circumstances, present the parsimonious solutions as their main results—and not, as is cur-

rently customary in the QCA literature—intermediate solutions. Moreover, if parsimony can
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only be maximized at the prize of introducing untenable simplifying assumptions, recourse

must be made to a Boolean method that dispenses with Quine-McCluskey optimization.
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