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Abstract
Background Coincidence Analysis (CNA) is a configurational comparative method of
causal learning that has seen a significant uptick in applications in public health in recent
years. To build its causal models, CNA searches for redundancy-free relations of suffi-
ciency and necessity in data using a sufficiency measure called consistency and a necessity
measure called coverage.
Methods This paper argues that consistency and coverage have severe limitations. In
particular, they are not reliable when the relative frequencies of candidate causes and
outcomes are at high or low extremes. We propose alternative sufficiency and necessity
measures that are not affected by these limitations and benchmark them against standard
consistency and coverage in an extended simulation experiment analyzing binary, so-called
crisp-set, data.
Results Across a wide range of data scenarios, the overall quality of CNA models built by
means of the new measures is more than 20% higher than when models are built using the
standard measures.
Conclusion We recommend that the new measures are made available in relevant CNA
software and that CNA users transition to building crisp-set models with them.

Keywords: configurational causal modeling, causal complexity, INUS causation, consistency,
coverage

1 Introduction
Coincidence Analysis (CNA) belongs to the family of so-called configurational compara-
tive methods of causal learning that includes Qualitative Comparative Analysis (QCA) as its
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best-known member [1–4]. CNA tracks causal complexity by assembling multiple causes in
bundles (conjunctions) that only bring about their effect when all of their components are co-
instantiated and by placing these bundles on alternative (disjunctive) causal paths that operate
independently of one another. The method is custom-built to deal with causal structures
featuring interactions and equifinality, which pose challenges for standard methods because
structures with these features often violate linearity and comprise causes and effects that are
not pairwise correlated [5, 6]. To this end, CNA identifies redundancy-free (i.e. minimal) suf-
ficiency and necessity relations in data and combines them to causal structures as defined by
a modern regularity theory of causation—which, unlike most other theories, does not entail
that pairwise correlation is necessary for causation (cf. [7, 8]). CNA is the only configura-
tional comparative method that can process data generated by causal structures with multiple
outcomes, for example, causal chain structures.

In recent years, the method has been applied in various fields including the social,
political, and behavioral sciences [9–12]. CNA is currently seeing a significant uptick in
applications in public health, covering a wide range of topics from safety culture in medical
homes, opioid and obesity treatment, to cancer care, surgical site infection reduction, or the
impact of firearm laws on suicide and homicide rates [13–18].1 Simultaneously, the method
is continually being developed further [20], its performance benchmarked under varying data
scenarios and against other methods [2, 5], and its software implementation updated [21–23].

This paper contributes to these methodological advancements by improving CNA’s
approach to evaluating whether dependencies in data meet the standard for sufficiency or
necessity. Since its first introduction in 2009 [1], CNA has conducted such evaluations using
a sufficiency measure called consistency and a necessity measure called coverage. Both mea-
sures were directly imported from QCA, where they had been introduced on common-sense
grounds a few years earlier [24]. Consistency and coverage assess how frequently sufficiency
and necessity are satisfied in the data. They are equivalent to positive predictive value (aka
precision) and sensitivity (aka recall), respectively, which are well-known from fields such
as binary classification [25] and information retrieval [26]. Consistency and coverage play
a twofold role in CNA: on the one hand, they are key in CNA’s model-building algorithm,
and on the other, they are used in selecting among multiple model candidates output by that
algorithm.

De Souter [27] has recently shown that consistency and coverage do not take into account
all the evidence relevant for assessing whether some X is sufficient or necessary for some Y
in binary (crisp-set) data. In particular, the measures are insensitive to cases (units of obser-
vation) in the data in which both X and Y are absent, despite such cases often containing
important information about whether X should be considered sufficient/necessary for Y . In
consequence, De Souter introduces a sufficiency measure called contrapositive consistency
and a necessity measure called contrapositive coverage, which are sensitive to the evidence
neglected by standard measures. She demonstrates that using these supplementary measures
to select among multiple models—built in the usual way with standard measures—succeeds
in selecting models of significantly higher quality.

We follow up on these results by investigating the suitability of consistency, coverage,
and their contrapositive counterparts for evaluating sufficiency and necessity relationships
within CNA’s model-building algorithm. After reviewing the basics of CNA, the first part of

1For a full overview of the CNA literature see the Zotero Coincidence Analysis Group Library [19].
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the paper identifies data scenarios—characterized by very high or low relative frequencies of
X and Y —in which the four measures become unreliable. As these scenarios can coincide,
sufficiency and necessity relations cannot be reliably evaluated in all possible data scenar-
ios by merely aggregating consistency and coverage with the corresponding contrapositive
measures. Instead, new sufficiency and necessity measures are needed.

The second part of the paper introduces two new sufficiency measures and two new neces-
sity measures that mitigate the limitations of consistency, coverage, and their contrapositive
counterparts. In essence, they are appropriately weighted versions of existing measures. We
then conduct a comprehensive simulation experiment to benchmark the new measures against
standard consistency and coverage and to identify the pair of measures that performs best
overall. The results show that, across a wide range of binary data scenarios, the overall qual-
ity of CNA models built using that best-performing measure pair exceeds that of models built
using conventional measures by more than 20%.

2 Preliminaries
We begin by introducing the relevant notation and concepts. CNA builds causal models that
conform to the so-called MINUS theory of causation [7, 8].2 That theory defines the relation
of causal relevance (i.e., type-level causation) between a factor A taking some value α (A=α)
and a factor B taking a value β (B=β) in terms of A=α being part of a complex sufficient and
necessary condition of B=β that is rigorously freed of all redundant elements [7]. Factors can
either be crisp-set (binary), taking two possible values 0 and 1, fuzzy-set, taking real values
from the unit interval [0, 1], or multi-value, taking an open (but finite) number of non-negative
integers as possible values. We will develop our argument focusing on crisp-set data and,
thus, abbreviate our notation according to conventions in Boolean algebra: we use “A” as
shorthand for A=1 and “a” for A=0.3

The MINUS theory borrows much of its formal machinery from Boolean algebra, in
particular the operations of negation, ¬A (expressing “NOT A=1”), conjunction, A∗B
(“A=1 AND B=1”), disjunction, A + B (“A=1 OR B=1”), implication, A → B (“ IF A=1,
THEN B=1”), and equivalence A ↔ B (“A=1 IF, AND ONLY IF, B=1”).4 For crisp-set and
multi-value factors, Boolean operations are given a rendering in classical logic, which we do
not reiterate here (see e.g. [29]). The relations of sufficiency and necessity are defined based
on the implication operator. A Boolean expression, for example the conjunction A∗C, is suf-
ficient for B iff (i.e., if, and only if) A∗C → B, that is, whenever A AND C is true, B is
true—or equivalently, it is not the case that A AND C is true and B false. Conversely, an
expression, say, A∗C + a∗c + D is necessary for B iff B → A∗C + a∗c + D, meaning that
whenever B is true, A∗C OR a∗c OR D is true—or equivalently, B does not obtain without
any of A∗C OR a∗c OR D also obtaining.

Most sufficiency and necessity relations do not reflect causation, but those that are mini-
mal do [7]. A∗C is a minimally sufficient condition of B iff A∗C → B holds and no proper

2Originally, “INUS” was an acronym referring to Insufficient but Non-redundant parts of Unnecessary but Sufficient conditions
[8, p. 62]. As there are more elegant ways to capture the idea expressed by that expansion, “INUS” is often used as a mere name for a
theoretical framework today. Accordingly, “MINUS” is a name, without an expansion, locating the corresponding theory in the INUS
tradition.

3Note that italicization carries meaning: “A” designates the factor and “A” stands for A taking the value 1.
4The symbols “∗” and “+” are used as in Boolean algebra here (notational variants are “∧” and “∨”). For a standard introduction

to Boolean algebra see [28].
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(a)

A C D B
c1 1 1 1 1
c2 0 1 1 1
c3 1 0 1 1
c4 0 0 1 1
c5 1 1 0 1
c6 0 0 0 1
c7 0 1 0 0
c8 1 0 0 0

(b)

A C D B
c1 1 1 1 1
c2 0 1 1 1

c4 0 0 1 1
c5 1 1 0 1
c6 0 0 0 1
c7 0 1 0 0
c8 1 0 0 0
c9 0 0 1 0
c10 0 1 0 1

(c)
Figure/Table 1: Figure (a) is a causal hypergraph where arrows represent direct causal relevance, ‘⋄’ means negation, ‘•’ stands for
conjunction, and multiple arrows into the same node form a disjunction. It plots the MINUS-formula (1). Table (b) contains ideal data
generated by (a)/(1) and Table (c) real data.

part of A∗C is sufficient for B, that is, neither A → B nor C → B hold. A∗C + a∗c+D is a
minimally necessary condition of B iff B → A∗C + a∗c+D holds and no elimination of at
least one disjunct from A∗C+a∗c+D results in a necessary condition of B. Correspondingly,
CNA infers minimally necessary disjunctions of minimally sufficient conjunctions of inves-
tigated outcomes in disjunctive normal form (DNF) from data and outputs them as so-called
MINUS-formulas5, for instance:

A∗C + a∗c + D ↔ B (1)

The minimality (redundancy-freeness) of MINUS-formulas guarantees that each factor
value Xi on the left-hand side of ‘↔’ makes a difference to the right-hand side, because
without Xi the left-hand side would not satisfy sufficiency or necessity and, thus, would not
account for all variation in the factor on the right-hand side. Accordingly, MINUS-formulas
have a straightforward causal interpretation: conjunctions represent complex causes (interac-
tions) and disjunctions stand for alternative causes (equifinality). Hence, (1) entails that A
and C jointly cause B on one path, a and c on another, and D on a third path. A concrete
interpretation might be that the factors A, C, and D represent positions of electrical switches,
say, “up” and “down”, and B stands for a lamp being on. In this context, (1) asserts that the
lamp is caused to be on when either switches A and C are both in the “up” or “down” position
or switch D is in the “up” position. The causal hypergraph in Figure 1a provides a graphical
representation of this structure.

Table 1b features ideal data generated by structure (1), that is, data comprising all 23 = 8
possible configurations of the 3 mutually independent exogenous factors A, C, D such that
the values of B are assigned in accordance with (1). For brevity, we will henceforth refer to
a causal structure generating data as the ground truth of these data; thus, (1) is the ground

5Two remarks: first, an expression is in DNF iff it is a disjunction of one or more conjunctions of one or more factor values [28,
p. 13]. Second, there are atomic and complex MINUS-formulas, the former representing causal structures with one outcome, the later
structures with multiple outcomes. That distinction will not be relevant in this paper.
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truth of Table 1b. These data can be seen as obtained when experimentally investigating the
structure connecting the switches to the lamp under ideal laboratory conditions. Note that
the positions of the switches A and C are uncorrelated with the lamp being on or off. In
consequence, any method that takes pairwise correlation to be necessary for causation cannot
learn the structure in Figure 1a from the ideal data in 1b.

CNA, by contrast, has no problem recovering (1) from Table 1b. To this end, it proceeds
in two algorithmic phases (see [2] for more details). In phase (I), it searches for minimally
sufficient conditions of B. This is done by, first, testing for each individual value of A, C, and
D whether it is sufficient for B. Factor values that are not sufficient by themselves are then
gradually combined to increasingly complex conjunctions until sufficiency for B is satisfied.
By building these conjunctions from the bottom up and never adding an extra element to a
conjunction that is already sufficient for B, the algorithm ensures that conjunctions passing a
sufficiency test are minimally sufficient. The result of CNA’s first algorithmic phase applied
to Table 1b is this set of minimally sufficient conditions of B: {A∗C, a∗c, D}.

In phase (II), CNA first tests whether individual elements of the set {A∗C, a∗c, D} are
necessary for B. It then proceeds to building increasingly complex disjunctions of the non-
necessary elements and determining, at each complexity level, whether necessity for B is
satisfied. By building these disjunctions from the bottom up and never adding extra elements
to a disjunction that is already necessary, CNA ensures that resulting disjunctions are min-
imally necessary. For Table 1b, the result of phase (II) is the singleton set of minimally
necessary conditions {A∗C + a∗c + D},6 which is easily completed to the MINUS-formula
(1) by adding the outcome on the right-hand side of an equivalence operator. For ideal data,
CNA is guaranteed to find the ground truth.7

But of course, ideal data are rare in real causal learning contexts. Real data tend to be
affected by various deficiencies, particularly fragmentation and noise. Fragmentation refers
to the ratio of configurations of exogenous factors that are compatible with the ground truth
but missing from the data, due to practical limitations of data collection. To illustrate, consider
the data in Table 1c, again assumed to be generated by ground truth (1). The configuration
instantiated by case c3, with switches A and D in “up” and C in “down” position, is compatible
with (1) but missing from those data. As it is the only missing configuration of a total of
8 configurations compatible with (1) (see Table 1b), Table 1c has a fragmentation of 1/8 =
0.125. The higher the fragmentation, the less information about the ground truth is contained
in the data, and thus the more incomplete the resulting CNA models, on average.

By noise we mean the ratio of cases in the data that are incompatible with the ground truth,
due to, for example, measurement error or confounding. An incompatible case either features
an outcome without its causes or a cause without its outcome(s). To illustrate, two of the 9
cases in Table 1c, specifically c9 and c10, are incompatible with (1). In c9, a sufficient cause
of B, a∗c, is given without B; and in c10, B is given without any of its causes. The noise level
of Table 1c, hence, is 2/9 = 0.22. Data with zero fragmentation and zero noise are ideal data.

B cannot be modeled as a (strict) Boolean function of the other factors in Table 1c: the
value of B is not determined given the values of the other factors, as there are pairs of cases,
(c4, c9) and (c7, c10), in which A, C, and D take constant values but the value of B changes.

6There often exists more than one minimally necessary condition, giving rise to model ambiguities.
7To replicate the CNA analyses of Tables 1b and 1c see the paper’s online replication materials.
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So, the former factors cannot be combined to a minimally necessary disjunction of mini-
mally sufficient conditions of B, meaning that no MINUS-formula of B is inferrable from
Table 1c—provided that we require strict satisfaction of sufficiency and necessity. Nonethe-
less, most instances of the true causes of B—A∗C, a∗c, and D—are associated with B, and
most instances of B are covered by an instance of at least one of its causes. Sufficiency and
necessity are almost (strictly) satisfied. There is only one case, c9, that violates sufficiency
and one case, c10, that violates necessity. Hence, if we lower the bar for an association to pass
the sufficiency or necessity test, we can extract information about the ground truth from Table
1c despite the presence of fragmentation and noise.

Plainly though, causal learning from fragmented and noisy data comes with an inherent
error risk. Any conjunction of exogenous factor values may appear to be sufficient for the
outcome because counter-evidence is missing from the data due to fragmentation, and not
because it actually is causally relevant. And any conjunction that really is causally relevant
may appear to be insufficient for the outcome because of noise.

This is where measures evaluating the evidence for and against the satisfaction of suffi-
ciency and necessity in the data become crucial. When running the CNA algorithm on real
data δ with an outcome Y , we need to assess for each conjunction Φi of exogenous factor
values that is tested for sufficiency for Y in phase (I) whether the evidence in δ warrants
accepting Φi → Y . Analogously, we have to assess, for each disjunction Φi + . . . + Φj of
minimally sufficient conditions tested for necessity in phase (II), whether the evidence in δ
warrants accepting Y → Φi+. . .+Φj . An association that does not meet the strict sufficiency
or necessity standard in δ should be accepted as passing the sufficiency or necessity test if, and
only if, we can be reasonably confident that the association would be one of strict sufficiency
or necessity, were the same ground truth investigated under ideal laboratory circumstances,
that is, if (hypothetically) we were analyzing ideal data.

The evaluation measures utilized by CNA for this purpose were introduced to config-
urational comparative methods by Ragin in 2006 [24]. He labeled the sufficiency measure
consistency and the necessity measure coverage. In essence—formal definitions are given in
the next section—consistency and coverage, which both take values from the unit interval,
measure how often a tested sufficiency or necessity relation is satisfied in the data. Before
processing data with CNA, the analyst sets a consistency and a coverage threshold, typically
between 0.7 and 1.8 These thresholds express the degree to which a sufficiency or neces-
sity relationship needs to be satisfied in the real data for the analyst to accept that it holds
in the (hypothetical) ideal data. In phase (I), the algorithm then assesses each tested depen-
dency against the consistency threshold and collects all minimal conjunctions reaching this
threshold. In phase (II), disjunctions of these minimally sufficient conjunctions are tested
for necessity by determining whether they meet the coverage threshold. The result is a set
of minimal disjunctions satisfying the coverage threshold where each disjunct is a minimal
conjunction that meets the consistency threshold.

If the thresholds for consistency and coverage are set to 0.7 and 0.8, respectively, CNA
infers the following MINUS-formula from Table 1c:

C + D ↔ B (2)

8Setting suitable thresholds is an intricate task: the higher the thresholds, the higher the risk that resulting models are overfitted;
the lower the thresholds, the higher the risk that the models are uninformative or spurious. CNA provides a robustness protocol that
balances these two risks (see [20]).
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When causally interpreted according to the MINUS theory, model (2) claims that C and D
are causally relevant to B on two separate paths. Both of these claims are true according to
the ground truth (1) of Table 1c. As (2) only makes true causal claims, it is a correct model.
But it is incomplete, meaning that it does not fully represent the ground truth. (2) is a proper
submodel of (1): all causal claims entailed by (2) are also entailed by (1), but not vice versa
(see [2] for more on the submodel relation).

Incomplete ground truth recovery is a commonplace result when CNA analyzes real data.
The higher the fragmentation and noise levels, the sparser the evidence about the ground
truth, and therefore, the less completely that ground truth can be recovered. As CNA cannot
be expected to completely recover ground truths from fragmented and noisy data, sufficiency
and necessity measures fulfill their purpose if they enable CNA to reliably infer submodels
of the ground truth that are as complete as possible under non-ideal discovery circumstances.
There may be substantive differences in the quality of CNA outputs when the algorithm is run
with different evaluation measures. Of two alternative measures, preference should be given
to the one that, on average, recovers more correct and complete models. But how building
models based on alternative measures—of which there are many in other methodological
frameworks—influences CNA’s performance has not been investigated to date.

3 Current sufficiency and necessity measures of CNA
Before we turn to filling that gap, this section reviews the formal details of the evaluation mea-
sures currently utilized in CNA and highlights their limitations. For our ensuing discussion,
we use Φ as a placeholder for a Boolean expression in DNF (see footnote 5), for example, A,
A∗C, or A∗C + a∗c, while ϕ represents the negation of that DNF. Analogously, Y and y shall
be placeholders for single factor values and their negations, for example, A and a. Φ is called
the antecedent of the implication, and Y is the consequent. Moreover, we use cardinality bars
| . . . | to refer to the number of cases in the analyzed data δ satisfying the enclosed condition.
For example, |Φ∗Y | designates the number of cases in δ instantiating Φ∗Y .

3.1 Consistency
Consistency—the standard measure for evaluating the sufficiency of Φ for Y —is equivalent
to positive predictive value (PPV) in binary classification [25] and to precision in information
retrieval [26]. It determines whether Φ is likely to be sufficient for Y in ideal data by assessing
whether Φ → Y is satisfied often enough in the analyzed data δ. Consistency considers all
cases in δ featuring Φ and measures the proportion of them that satisfy Φ → Y , which are
those that instantiate both Φ and Y ; or formally:9

consistency(Φ → Y ) =
|Φ∗Y |
|Φ|

=
|Φ∗Y |

|Φ∗Y | + |Φ∗y|
(3)

By measuring the proportion of cases with Φ that satisfy Φ → Y , consistency penalizes the
cases with Φ that violate Φ → Y , that is, cases with Φ∗y: for a given |Φ|, or a given |Φ∗Y |,
consistency decreases as |Φ∗y| increases.

9The evaluation measures discussed in this section contain arithmetic sums. We symbolize sums with script-style “+”, as opposed
to the “+” used for Boolean disjunction.
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As an implication can only be violated by cases instantiating the antecedent but not the
consequent, this penalization scheme makes good intuitive sense. That is why it was adopted
in configurational comparative methods without much exploration of alternatives.10 Still,
some issues have been noted in the literature. In particular, as cases exhibiting Y cannot vio-
late Φ → Y , consistency tends to be high in data δ with a high proportion of cases featuring
Y , meaning with high outcome prevalence. But of course, the mere fact that most cases in δ
instantiate Y is not evidence in favor of Φ → Y holding in the (hypothetical) ideal version of
δ. This is typically viewed as a problem stemming from an inadequate calibration of Y giving
rise to a skewed distribution of Y’s values [3]. But De Souter [27] locates the source of this
problem in the consistency measure itself: consistency is an unsuited sufficiency measure for
high-prevalence data.

To see this, consider an antecedent Φ that is entirely independent of an outcome Y in data
δ. That is, the occurrence of Y is neither more nor less likely when Φ happens compared to
when ϕ happens. The subset of cases for which Φ is true does not contain a higher or lower
proportion of cases featuring Y than all cases in δ (or than the subset of cases with ϕ). In
other words, the proportion of cases with Y among the cases with Φ, which amounts to the
consistency of Φ → Y , is equal to the proportion of cases with Y among all cases in δ, which
amounts to prevalence. In brief, consistency is equal to prevalence.

That consistency is equal to prevalence when antecedent and outcome are independent
exposes the limitation of consistency. When prevalence is high, say 95%, any expression
Φ → Y such that Φ and Y are independent in the data has consistency 0.95. For example,
let Y represent employees (self-)reporting as being competent at work, and Φ shall stand for
having a surname of less than 6 characters. Most people report as being competent, meaning
that Y is highly prevalent. But clearly, such reports are not influenced by name length. Never-
theless, having a short name turns out to be sufficient for competence with an almost perfect
consistency of 0.95. The reason is that only 5% of the cases considered by consistency (i.e.
the few people reporting as incompetent), could possibly violate Φ → Y . In high-prevalence
scenarios, therefore, high consistency does not indicate strong evidence that Φ → Y holds in
corresponding ideal data. However, a high score on an adequate sufficiency measure should
always signal strong evidence for Φ → Y .

A further limitation of consistency is its susceptibility to noise when prevalence is low. If
cases with Y are rare, there are only few cases that could possibly corroborate that Φ → Y
holds (i.e. the few cases with Y ), and if some of them are affected by noise, consistency
plummets. In consequence, the chances that consistency can detect sufficiency satisfaction
are low. That is, even when Φ → Y does in fact reflect a causal relation between Φ and Y , a
small number of noisy cases with Φ∗y are enough to yield a low consistency score, rendering
it impossible to find that relation. While consistency is too lenient when prevalence is high,
it is overly strict when prevalence is low. Overall, consistency is an unreliable evaluation
measure for the sufficiency of Φ for Y when prevalence is at extreme highs or lows.

3.2 Coverage
Coverage—the standard measure for evaluating the necessity of Φ for Y —is equivalent to
sensitivity in binary classification and to recall in information retrieval. It determines whether

10Some alternative sufficiency measures have been considered in recent years (e.g. [30, 31]), but those are only intended to
address alleged weaknesses of standard consistency in fuzzy-set analyses.

8



Φ is likely to be necessary for Y in (hypothetical) ideal data by assessing whether Y → Φ
is satisfied often enough in the analyzed data δ. To this end, coverage considers all cases in
δ featuring Y and measures the proportion of them that satisfy Y → Φ, which are those that
instantiate both Φ and Y ; or formally:

coverage(Y → Φ) =
|Φ∗Y |
|Y |

=
|Φ∗Y |

|Φ∗Y | + |ϕ∗Y |
(4)

By measuring the proportion of cases with Y that satisfy Y → Φ, coverage penalizes the
cases with Y that violate Y → Φ, that is, cases with ϕ∗Y : for a given |Y |, or a given |Φ∗Y |,
coverage decreases as |ϕ∗Y | increases.

This is a sensible penalization scheme, since the necessity of Φ for Y can only be violated
by cases instantiating Y but not Φ. Still, some limitations have been highlighted in the litera-
ture. Notably, coverage tends to be high in data δ with a high proportion of cases featuring Φ.
But the mere fact that most cases in δ instantiate Φ is not evidence in favor of Y → Φ being
underwritten by a causal relation. This problem is typically attributed to the trivialness of
necessary conditions with high |Φ|

/
N [3]—where N is the total number of cases in δ. How-

ever, De Souter [27] shows that it is a consequence of coverage’s unsuitability as necessity
measure when |Φ|

/
N is high.

This becomes apparent when considering an outcome Y and some Φ that are statistically
independent in data δ, such that Φ is not more or less likely when Y happens than when
y happens. Accordingly, the set of cases for which Y holds does not exhibit a higher or
lower proportion of cases featuring Φ than all cases in δ (or than the cases with y). Hence,
the proportion of cases with Φ among those with Y , which is the coverage of Y → Φ,
is equal to the proportion of cases with Φ among all cases in δ, which is |Φ|

/
N . In other

words, coverage is equal to |Φ|
/
N . That, in turn, means that a very frequent Φ is expected

to score high on coverage for any Y . To illustrate, let Y again stand for people self-reporting
as competent at work and Φ for people having names of fewer than 10 characters. As most
English last names have fewer than 10 characters, Φ is very frequent. As a result, being short-
named almost perfectly covers being competent. Plainly though, scoring high on coverage
merely because short names are very frequent does not amount to strong evidence that being
short-named is actually necessary for reporting as competent. Coverage does not adequately
evaluate necessity when |Φ|

/
N is high.

Another weakness of coverage is its high susceptibility to noise when |Φ|
/
N is low.

Coverage penalizes cases with ϕ∗Y in proportion to cases with Φ∗Y . Therefore, if there are
only a few cases with Φ and thus with Φ∗Y , coverage can be pulled down significantly by
only a few noisy cases with ϕ∗Y . This happens even if Y → Φ is actually underwritten by a
causal dependence. So, coverage is both too lenient when |Φ|

/
N is high and too strict when

|Φ|
/
N is low, making it an unreliable evaluation measure for the necessity of Φ for Y when

|Φ|
/
N is at high or low extremes.

3.3 Contrapositive consistency
To mitigate the problems of consistency when prevalence is high, De Souter [27] introduced
the new measure of contrapositive consistency, or C-consistency for short. C-consistency is
equivalent to specificity in binary classification. Its use as sufficiency measure in CNA is
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based on the rule of contraposition, which states that Φ → Y is logically equivalent to y → ϕ.
Thus, by measuring the proportion of cases with Φ that also feature Y , the original con-
sistency measure does not only assess whether Φ → Y is satisfied often enough, but also
whether y → ϕ is satisfied often enough. Likewise, C-consistency evaluates both y → ϕ and
Φ → Y by measuring the proportion of cases with y that feature ϕ:

C-consistency(Φ → Y ) =
|ϕ∗y|
|y|

=
|ϕ∗y|

|ϕ∗y| + |Φ∗y|
(5)

In order for Φ to be sufficient for Y , the cases with y must exhibit ϕ. Accordingly, C-
consistency penalizes the cases with y exhibiting Φ, which are the same cases penalized by
consistency and exactly the cases violating Φ → Y and y → ϕ. Overall, C-consistency is a
sensible additional sufficiency measure.

In section 3.1, we have shown that regular consistency is unreliable for evaluating Φ → Y
in high-prevalence data because it is equal to prevalence when Φ and Y are independent. The
same does not hold for C-consistency, making it a preferable sufficiency measure in certain
scenarios where regular consistency fails. This does not imply, however, that C-consistency is
always reliable. Analogously to how we demonstrated that consistency and coverage are equal
to prevalence and |Φ|

/
N , respectively, when Φ and Y are independent, it can be shown that C-

consistency is equal to |ϕ|
/
N when Φ and Y are independent. It follows that C-consistency is

unreliable as sufficiency measure when |Φ|
/
N is low (i.e. when |ϕ|

/
N is high). Furthermore,

just as consistency and coverage are too strict when, respectively, |Y |
/
N and |Φ|

/
N are low,

C-consistency is too strict when |Φ|
/
N is high (|ϕ|

/
N is low), since such scenarios have few

cases with ϕ∗y and C-consistency penalizes cases with Φ∗y relative to cases with ϕ∗y.
Unfortunately, the weakness scenarios of consistency and C-consistency can coincide. For

example, if prevalence is very high while |Φ|
/
N is very low, consistency and C-consistency

are both unreliable. Therefore, simply aggregating these measures does not yield dependable
sufficiency evaluation in all scenarios. Instead, a new measure is needed, one that is reliable
regardless of |Y |

/
N and |Φ|

/
N .

3.4 Contrapositive coverage
Analogously to the introduction of C-consistency as sufficiency measure to complement con-
sistency, De Souter [27] introduced contrapositive coverage, or C-coverage, as an alternative
to coverage for measuring necessity:

C-coverage(Y → Φ) =
|ϕ∗y|
|ϕ|

=
|ϕ∗y|

|ϕ∗y| + |ϕ∗Y |
(6)

C-coverage is equivalent to negative predictive value (NPV) from binary classification. Like
regular coverage, C-coverage is justified by the rule of contraposition: Y → Φ is logically
equivalent to ϕ → y. Both expressions are violated if and only if ϕ∗Y holds. Correspondingly,
C-coverage penalizes the cases exhibiting ϕ∗Y by measuring the proportion of cases with ϕ
that instantiate y. But in contrast to regular coverage, C-coverage can reliably assess whether
Y → Φ holds even when |Φ|

/
N is at extremes, because contrary to coverage, C-coverage is

not equal to |Φ|
/
N when Φ and Y are independent.
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Still, C-coverage is itself sometimes unreliable as necessity measure. It is too lenient when
|y|

/
N is high, that is, when prevalence is low, and it is too strict when prevalence is high.

As the data scenarios in which coverage and C-coverage are unreliable can coincide, a mere
aggregation of both measures does not yield dependable necessity evaluation in all scenarios.
Therefore, a new necessity measure, which can be trusted regardless of |Y |

/
N and |Φ|

/
N ,

is needed.

4 New sufficiency and necessity measures for CNA
While there is limited research on alternative sufficiency and necessity measures in CNA,
other fields, including binary classification [25], association rule learning [32], and Bayesian
epistemology [33], have extensively investigated evaluation measures for sufficiency and
necessity—though under different labels such as classification performance, association rule
interestingness, or confirmation. Some measures proposed in that context are suitable for the
purposes of CNA, others are not, for example, because they evaluate sufficiency and neces-
sity simultaneously and not, as is required for CNA model building, independently of one
another. Still other measures, which are not directly suitable for CNA, say, because they take
values outside of the [0,1] interval, can be adapted to fit CNA through slight modifications,
such as transformations into the [0,1] interval.

In our search for better model-building measures, we explored a wide range of candidates
from various disciplines and selected those for closer scrutiny that satisfied the conceptual
criteria for evaluating sufficiency and necessity in CNA model building. We also adapted
some measures to serve CNA’s purposes. Among the measures considered were adjusted
versions of consistency, C-consistency, coverage, and C-coverage featuring weights attached
to the respective penalty terms, which deliver stronger or weaker penalization depending on
prevalence and |Φ|

/
N . We incorporated penalty weight exponents to adjust the influence of

the weights on the final score. Moreover, we considered suitable variants of the Z-measure
[33], as well as a range of harmonic means—both unweighted and weighted—of consistency
and C-consistency for sufficiency evaluation, and of coverage and C-coverage for necessity
evaluation.

We conducted small-scale initial simulation experiments with all measures in this pool
of candidates to determine whether using them for CNA model building showed promise for
improving the quality of CNA’s outputs. Many of the candidates could be excluded based on
the findings from these initial tests. However, four of them yielded promising results; two
sufficiency measures and two necessity measures. This section presents the formal details
of these four promising candidates and justifies them theoretically, before the next section
reports the results of resource-intensive, large-scale benchmarking experiments we conducted
with them.

4.1 Prevalence-adjusted consistency
The first promising sufficiency measure is what we will call prevalence-adjusted consistency
(PA-consistency). This measure is equivalent to calibrated precision as proposed by Siblini et
al. [34]. It addresses the limitations of consistency, which is too lenient when prevalence is
high and too strict when prevalence is low, by imposing a stronger penalty when prevalence
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is high and a weaker penalty when prevalence is low. It is defined as follows:

PA-consistency(Φ → Y ) =
|Φ∗Y |

|Φ∗Y | + |Y |
|y| · |Φ∗y|

(7)

The difference between PA-consistency and regular consistency (cf. equation (3)) is that
PA-consistency attaches a weight |Y |

|y| to the penalty term |Φ∗y| in the denominator. When
|Y | = |y|, this weight is 1, to the effect that PA-consistency and regular consistency are equal.
However, the weight increases as |Y | increases relative to |y|, implying that a high weight
is assigned to |Φ∗y| when prevalence is high. Consequently, every case with Φ∗y is penal-
ized more strongly by PA-consistency than by regular consistency, meaning that the former is
lower than the latter when prevalence is high (except when |Φ∗y| = 0 and both are equal to 1).

One crucial upshot of this is that, contrary to consistency, PA-consistency is not equal to
prevalence when antecedent and consequent are independent. Instead, it is equal to 1/2 in such
scenarios.

Proof. When Φ and Y are statistically independent, Φ is not more or less likely to occur when
Y occurs than when y occurs. This means that the proportion of cases with Φ among those
featuring y is equal to the proportion of cases with Φ among those featuring Y . So,

|Φ∗y|
|y|

=
|Φ∗Y |
|Y |

(8)

Using this equality, the value of PA-consistency is determined as follows:

PA-consistency(Φ → Y ) =
|Φ∗Y |

|Φ∗Y | + |Y |
|y| · |Φ∗y|

=
|Φ∗Y |

|Φ∗Y | + |Y | · |Φ∗y|
|y|

=
|Φ∗Y |

|Φ∗Y | + |Y | · |Φ∗Y |
|Y |

=
|Φ∗Y |

|Φ∗Y | + |Φ∗Y |

=
|Φ∗Y |

2 · |Φ∗Y |
=

1

2

This shows that PA-consistency depends neither on prevalence nor on |Φ|
/
N when

antecedent and consequent are independent. Contrary to consistency, PA-consistency cannot
be high when antecedent and consequent are independent. It follows that PA-consistency is
more reliable than regular consistency for sufficiency evaluation when prevalence is high.

Furthermore, when prevalence is low, the weight |Y |
|y| is low, implying that PA-consistency

assigns a weaker penalty to |Φ∗y| than consistency. Consequently, whereas consistency plum-
mets in low prevalence data once there are only a few noisy cases with Φ∗y, even if Φ → Y is
actually underwritten by a causal dependence, PA-consistency can still be high in such scenar-
ios. This makes PA-consistency a more reliable sufficiency measure than regular consistency
when prevalence is low.
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4.2 Antecedent-adjusted C-consistency
The second promising sufficiency measure is defined analogously. We call it antecedent-
adjusted C-consistency (AAC-consistency). It mitigates C-consistency’s leniency when the
antecedent Φ of a sufficiency relation is infrequent in the data (i.e. |Φ|

/
N is low) and its

strictness when Φ is frequent (i.e. |Φ|
/
N is high):

AAC-consistency(Φ → Y ) =
|ϕ∗y|

|ϕ∗y| + |ϕ|
|Φ| · |Φ∗y|

(9)

That measure differs from C-consistency by the weight |ϕ|
|Φ| attached to the penalty term |Φ∗y|.

If |ϕ| = |Φ|, this weight is 1, rendering AAC-consistency and C-consistency equal. But the
weight increases as |Φ| decreases relative to |ϕ|, implying that a high weight is assigned to
|Φ∗y| in datasets with low |Φ|

/
N , which, in turn, yields that all cases with Φ∗y are penalized

more strongly by AAC-consistency than by C-consistency. As a result, the former is lower
than the latter when |Φ|

/
N is low (except when |Φ∗y| = 0).

Again, a crucial upshot is that AAC-consistency, unlike C-consistency, is not equal to
|ϕ|

/
N when antecedent and consequent are independent, rather, it is equal to 1/2.

Proof. When Φ and Y are statistically independent, y is not more or less likely to occur when
Φ occurs than when ϕ occurs. That means that the proportion of cases with y among those
featuring Φ is equal to the proportion of cases with y among those featuring ϕ. So,

|Φ∗y|
|Φ|

=
|ϕ∗y|
|ϕ|

Using this equality, we can calculate the value of AAC-consistency as follows:

AAC-consistency(Φ → Y ) =
|ϕ∗y|

|ϕ∗y| + |ϕ|
|Φ| · |Φ∗y|

=
|ϕ∗y|

|ϕ∗y| + |ϕ| · |Φ∗y|
|Φ|

=
|ϕ∗y|

|ϕ∗y| + |ϕ| · |ϕ∗y|
|ϕ|

=
|ϕ∗y|

|ϕ∗y| + |ϕ∗y|

=
|ϕ∗y|

2 · |ϕ∗y|
=

1

2

That is, AAC-consistency neither depends on |Φ|
/
N nor on prevalence when antecedent

and consequent are independent. Unlike C-consistency, AAC-consistency cannot be high
when Φ and Y are independent. This makes AAC-consistency more reliable for evaluating
Φ → Y when |Φ|

/
N is low (i.e. when |ϕ|

/
N is high). Moreover, when |Φ|

/
N is high, the

weight |ϕ|
|Φ| is low, implying that AAC-consistency assigns a weaker penalty to Φ∗y than C-

consistency. As C-consistency is too strict when |Φ|
/
N is high, assigning a weaker penalty

in these scenarios makes AAC-consistency a more reliable sufficiency measure when |Φ|
/
N

is high.
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4.3 Antecedent-adjusted coverage
The promising candidates for necessity evaluation are adjusted versions of coverage and C-
coverage that feature appropriate weights attached to the penalty term |ϕ∗Y |. A first new
necessity measure is antecedent-adjusted coverage (AA-coverage):

AA-coverage(Y → Φ) =
|Φ∗Y |

|Φ∗Y | + |Φ|
|ϕ| · |ϕ∗Y |

(10)

As regular coverage (cf. equation (4)) is too lenient when |Φ|
/
N is high and too strict when

|Φ|
/
N is low, AA-coverage adds the weight |Φ|

|ϕ| to the penalty |ϕ∗Y |. This makes AA-
coverage stricter than coverage when |Φ|

/
N is high and more lenient than coverage when

|Φ|
/
N is low, thereby mitigating the limitations of coverage.

Like PA-consistency and AAC-consistency, AA-coverage has a constant expected value
of 1/2, if antecedent and consequent are independent—which can be proven in close anal-
ogy to the constancy proofs given in sections 4.1 and 4.2. This makes AA-coverage more
reliable than regular coverage (which has an expected value of |Φ|

/
N when antecedent and

consequent are independent) for necessity evaluation when |Φ|
/
N is at high or low extremes.

4.4 Prevalence-adjusted C-coverage
Since C-coverage (cf. equation (6)) is too lenient when prevalence is low and too strict when
prevalence is high, the second promising new necessity measure is prevalence-adjusted C-
coverage (PAC-coverage):

PAC-coverage(Y → Φ) =
|ϕ∗y|

|ϕ∗y| + |y|
|Y | · |ϕ∗Y |

(11)

If |y| = |Y |, PAC-coverage and C-coverage are equal because the penalty weight |y|
|Y | is 1.

But the weight increases as |y| increases relative to |Y |. It follows that, when prevalence is
low, cases with ϕ∗Y are penalized more strongly by PAC-coverage than by C-coverage.

Whereas C-coverage is equal to |y|
/
N when Φ and Y are independent, PAC-coverage is

equal to the constant 1/2. The proof is analogous to the constancy proofs given in sections 4.1
and 4.2. When prevalence is low (i.e. when |y|

/
N is high), therefore, PAC-coverage is not

expected to be high when Φ and Y are independent. This makes PAC-coverage a more reliable
necessity measure than C-coverage in low prevalence scenarios. Finally, when prevalence is
high (i.e. when |y|

/
N is low) the weight |y|

|Y | is low, meaning that PAC-coverage penalizes less
than C-coverage, which is too strict in such scenarios. The result is a more reliable necessity
evaluation also when prevalence is high.

5 Benchmarking
We now have two promising sufficiency measures and two promising necessity measures on
the table, but the CNA algorithm only needs one of each. Hence, a selection must be made. We
have to identify the combination of adjusted sufficiency and necessity measures that, when
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implemented in CNA’s model building algorithm, yields the outputs with maximal quality.
As this selection cannot be based on theoretical and conceptual considerations alone, we con-
duct an extended series of large-scale simulation experiments benchmarking the performance
of four combinations—⟨PA-consistency, AA-coverage⟩, ⟨AAC-consistency, AA-coverage⟩,
⟨PA-consistency, PAC-coverage⟩, and ⟨AAC-consistency, PAC-coverage⟩—and comparing it
to the performance of regular consistency and coverage. This section presents the setup and
results of those benchmarking experiments. The code of the test series is available in the
paper’s online replication materials.

5.1 Test setup and data simulation
We design the tests as inverse search trials. In a nutshell, the trials consist in, first, randomly
building data-generating structures (or ground truths), second, simulating data with noise,
fragmentation, and prevalence imbalances from those structures, third, processing those data
with a combination of evaluation measures, and fourth, determining the degree to which the
resulting outputs comply with various benchmark criteria.

In the first step, we generate a stock of 1000 ground truths ∆1 to ∆1000, from the factor set
F = {A, B, C, D, E, F, G}. To avoid excessive runtimes, we restrict the maximal complexity
of the ground truths: our ∆i have one outcome only and a maximum of five alternative paths
(i.e. disjuncts), with a maximum of three causes on each path (i.e. conjuncts), producing the
outcome. The outcome is fixed to be A. Within these complexity confines, the generation of
∆1 to ∆1000 is random. Some ∆i are as simple as C ↔ A, while others feature antecedents
with 5 disjuncts comprising 3 conjuncts each. In the second step, we simulate nine datasets
δki from each ground truth ∆i with randomized sample sizes, fragmentation and noise levels,
and outcome prevalence systematically varied to nine different ratios. The data are generated
in five phases.

(I), we create ideal data δidi for ∆i, such that each configuration compatible with ∆i is
represented by exactly one case in δidi . (II), a fragmentation level F is randomly drawn from
the interval [0.2, 0.5], and N id

i ·F randomly selected rows are removed from δidi , where N id
i

is the sample size of δidi . The resulting fragmented data δfri have a small to intermediate
sample size (between 32 to 64 cases) and exactly one case per configuration. But of course,
real data may have larger sizes and multiple cases may instantiate the same configuration.
For that reason, we then, (III), sample a random number of rows (possibly 0) from δfri and
combine them with δfri to an augmented dataset δaui with a sample size anywhere between
the original size of δfri and 200. In phase (IV), we introduce noise into every δaui . This is
done by drawing a noise level S from the interval [0.01, 0.3], and then reversing (negating)
the outcome value in Nau

i ·S randomly selected rows of δaui , where Nau
i is the sample size of

δaui . Replacing the outcome value in a configuration that is compatible with ∆i by its negation
yields a configuration that is incompatible with ∆i. In other words, the rows with reversed
outcomes change from being signal to being noise rows.

Finally, in phase (V), we systematically manipulate the prevalence of the outcome, which
is A in all datasets, to every value in the following variation sequence:

⟨0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9⟩.11

11Prevalence cannot be set to 0 or 1 because without variation in the outcome data would not contain difference-making evidence,
forcing CNA to return nothing.
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This is accomplished by purposefully duplicating and eliminating cases δnoi in such a way
that the fragmentation and noise levels of δnoi remain unchanged. For example, in order to
reduce the outcome prevalence to some lower value in the variation sequence, we duplicate
noise and signal cases featuring A=0 at the noise ratio of δnoi , thereby maintaining that noise
ratio, and we analogously eliminate cases with A=1, but only those that have duplicates in
δnoi , to avoid increasing fragmentation.12 The result are the nine test datasets δki for ∆i, where
k designates the value to which outcome prevalence is set. For example, δ0.923 refers to the test
data simulated from ground truth ∆23 in which the prevalence of the outcome is 0.9.

5.2 Data analysis and benchmark criteria
We analyze the test data with five different combinations of sufficiency and necessity mea-
sures, yielding five different experiments A to E. Experiment A is the control run that
applies CNA with regular consistency and coverage. In experiment B, we run CNA with
PA-consistency and AA-coverage, experiment C implements AAC-consistency and AA-
coverage, experiment D uses PA-consistency and PAC-coverage, and experiment E applies
AAC-consistency combined with PAC-coverage. In each experiment, 9 000 test datasets are
processed in nine test arms, T 0.1 to T 0.9, each corresponding to one prevalence level from
the variation sequence and each comprising 1 000 datasets. That is, δ0.11 to δ0.11000 are analyzed
in the first test arm, δ0.21 to δ0.21000 in the second, etc.

We use an adapted implementation of the model building algorithm in the cna R-library—
this implementation is available in the paper’s online replication materials—to run CNA with
the new evaluation measures, and we employ the robustness analysis protocol developed by
Parkkinen and Baumgartner [20]. That means that each δki is not only analyzed at one des-
ignated setting of sufficiency and necessity thresholds for the tested pair of measures but
re-analyzed at all combinations of settings that can be built from a whole threshold sequence,
in our case ⟨0.95, 0.85, 0.75, 0.65⟩. All MINUS-formulas CNA recovers in that re-analysis
series are collected and their robustness and overall model fit are measured and scored. For
every δki , the 95th percentile of top-performing MINUS-formulas is returned as CNA’s output
set Ok

i for these data.
The elements of such an output set, which on average contains between 1 and 5 models in

our test series, are indistinguishable on the basis of the evidence contained in δki . Accordingly,
if Ok

i comprises more than one MINUS-formula, CNA cannot determine which of those
formulas truthfully represents the ground truth ∆i; all that it infers is that at least one of them
is true of ∆i. It follows that a set Ok

i featuring, say, three MINUS-formulas m1, m2, and
m3 is to be causally interpreted disjunctively: m1 OR m2 OR m3 is true of ∆i.13 Overall,
analyzing the data of our entire test series yields 1 000 output sets for each of the test arms
T 0.1 to T 0.9 in each of the experiments A to E.

We assess the quality of the output sets in each T k by a summary score that aggregates
two complementary benchmark scores averaged over all trials in T k with the ratio of trials
resulting in empty outputs. The first benchmark is a qualitative correctness criterion, which
has been repeatedly used in CCM benchmarking before (e.g. [2, 5, 36]). What CNA infers

12Note that this procedure to manipulate prevalence while maintaining fragmentation and noise cannot also keep the sample size
fixed. In consequence, test data at the lower and upper ends of the variation sequence typically have much higher sample sizes than
datasets with mid-range prevalence levels.

13On par with Bayesian network methods, but different from typical regression methods, CCMs automatically build all equally
data-fitting models (for more on CCM model ambiguities, see, e.g. [35]).

16

https://github.com/Luna-De-Souter/New-sufficiency-and-necessity-measures-for-model-building-with-Coincidence-Analysis


from δki counts as correct if, and only if, that inference is true of the ground truth ∆i. As
we have seen above, that is the case if, and only if, at least one MINUS-formula mj in Ok

i

is true of ∆i, which, in turn, holds if, and only if, all factor values contained in mj are in
fact causes of the outcome of ∆i and all conjunctive and disjunctive groupings in mj are in
agreement with ∆i.14 For example, if formula (1), i.e. A∗C + a∗c +D ↔ B, is the ground
truth, models as A∗C ↔ B or A+D ↔ B are correct because all factor values contained in
these models are actually causes of B and all conjunctive and disjunctive groupings are true
of (1). By contrast, a model as A∗d ↔ B is incorrect because d is not in fact a cause of B, or
A + C ↔ B is incorrect because A and C are conjunctively and not disjunctively grouped
in (1). If CNA does not infer anything from δki and, thus, Ok

i is empty—say, because the
chosen sufficiency or necessity thresholds cannot be met—we assign ‘NA’ to the correctness
benchmark for that trial.

Making only true claims about ∆i, as is required to pass the correctness benchmark, can
be easily accomplished by models that make only very few causal claims. As more informa-
tive models are preferable to less informative ones, the second benchmark, which is called
completeness, examines how much information about a ground truth is contained in a model.
The completeness of a MINUS-formula mj with respect to ∆i is the proportion of ∆i that is
recovered by mj . To measure this, we divide the complexity of the maximal syntactic inter-
section of mj and ∆i by the complexity of ∆i, where the complexity of a MINUS-formula is
the number of factor value appearances in its antecedent. For example, if A∗C+a∗c+D ↔ B
is the ground truth, a model such as A∗C + A∗D ↔ B scores 3/5 = 0.6 on completeness,
because the maximal syntactic intersection, A∗C+D ↔ B, has complexity 3 and the ground
truth has complexity 5. When Ok

i is empty, completeness also gets the value ‘NA’.
The ratio of trials in each test arm T k with an empty output set Ok

i yields a final quality
benchmark called emptiness. Although an empty output is suboptimal, it is still preferable to
a false output. Issuing a correct and complete output is more important than issuing a non-
empty one. Correspondingly, when aggregating correctness, completeness, and emptiness to
an overall quality score, we give less weight to emptiness. More specifically, our overall
quality score for an individual test arm T k is the product of the correctness score averaged
over all trials in T k (with NAs removed), the average completeness score in T k (with NAs
removed), and the square root of the ratio of non-empty trials in T k:

overall(T k) = correct(T k) · complete(T k) ·
√

1− empty(T k) (12)

5.3 Results
The results are plotted in Figure 2, subdivided by experiments A to E and complemented by
a table with mean overall quality scores for the experiments as a whole. In the plots for the
individual experiments, the benchmark scores are depicted separately for each test arm T 0.1 to
T 0.9. Correctness, completeness, and emptiness are represented as black, red, and green bars,
while the overall score is presented as a blue line. The relevant values for all benchmark scores
are on the left y-axis. In addition, the yellow line labeled ambiguity, with relevant values on
the right y-axis, indicates how many MINUS-formulas the output sets contain on average in
each test arm. All represented values are averages over the 1000 trials in the corresponding

14These conditions are satisfied if mj is a submodel of ∆i (e.g. [2]).
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Figure 2: Results of experiments A to E. Prevalence levels are given on the x-axis. The left y-axis indicates average correctness,
completeness, and emptiness scores, depicted as bars, and overall quality scores, represented as lines. Average ambiguity ratios are
given as lines with corresponding values on the right y-axis. All scores are averages from 1000 analyzed datasets in each test arm.
The table in the bottom right corner provides mean overall quality scores for the experiments as a whole.

test arm. For instance, the emptiness ratio of 0.71 depicted by the left-most green bar in the
plot for experiment A means that the output of CNA is empty in 71% of the 1000 trials of
T 0.1. The adjacent black correctness bar expresses that in 54% of the non-empty trials in that
same test arm the CNA output contains a correct model.

The first notable finding derives from the control experiment A. It shows that the perfor-
mance of CNA drops significantly at extreme prevalence levels when CNA builds its models
with regular consistency and coverage. Specifically, if 80% or more of the cases in the data
feature the outcome, CNA returns a correct model in fewer than 75% of the trials. If preva-
lence is at low extremes, CNA outputs are empty in over two-thirds of the trials. Among the
non-empty outputs, only slightly more than half yield correct models, which, however, reach
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the highest completeness scores of the whole test series, meaning that these models are over-
fitted supermodels of the ground truth.15 Furthermore, ambiguity ratios increase noticeably at
prevalence extremes. In sum, when employing consistency and coverage, reliable and infor-
mative model building with CNA requires prevalence to be balanced at mid-range levels. At
those mid-range levels, however, the standard sufficiency and necessity measures yield an
output quality on par with all other tested measures.

Our results also show that not all tested combinations of the promising measure candi-
dates mitigate the sensitivity of CNA’s output quality to prevalence. When models are built
with the combination of AAC-consistency and AA-coverage, CNA’s performance is even
more sensitive to prevalence extremes than when regular consistency and coverage are used.
In experiment C, fewer than half of the non-empty outputs contain a correct model at a
prevalence of 0.1, and at a prevalence of 0.9, CNA does not find a model in one out of two
trials. While the mean overall performance score in experiment A is 0.46, it is only 0.41 in
experiment C.

In experiments B and E, CNA reaches overall performance scores of 0.5, which is about
9% better than in the control experiment A, and sensitivity to prevalence is merely one-sided:
in experiment B, the quality of CNA’s output only plunges when prevalence is very high,
while in experiment E, overall performance dives at very low prevalence only. By contrast,
in experiment B, there are virtually no empty trials when prevalence is low, while correctness
remains above 0.85 and completeness above 0.53. Moreover, whereas the non-empty output
sets contain almost 5 models, on average, at the lower prevalence end of experiment A, ambi-
guity is only at 2.4 models per trial at that same prevalence level of experiment B. When
prevalence is high in experiment E, ambiguity ratios are even lower, while correctness and
completeness are at 0.89 and 0.56, respectively.

Clearly though, the most notable result is that the combination of PA-consistency and
PAC-coverage, which is examined in experiment D, renders the correctness and completeness
of CNA’s output entirely insensitive to prevalence extremes. The mean overall performance
score for that experiment is 0.57, which is 23% higher than in the control experiment. Cor-
rectness stays above 0.89 in all test arms of experiment D, and completeness is consistently
between 0.63 and 0.65. The only benchmark score that is slightly affected by prevalence
imbalances is emptiness. At low and high prevalence extremes, CNA’s output is empty in,
respectively, 11% and 10% of the trials. This is a mild prevalence sensitivity in compari-
son to the severe impact prevalence imbalances can have on the number of trials with empty
outputs in the other experiments. Averaged over all prevalence levels, the combination of PA-
consistency as sufficiency measure and PAC-coverage as necessity measure is the winner of
the test series.

6 Discussion
Our simulation experiments confirm much of what we anticipated based on the theoreti-
cal considerations in sections 3 and 4. First, the performance of CNA drops substantively

15That CNA’s overall performance drops significantly at prevalence extremes aligns with recent findings of Swiatczak and Baum-
gartner [37]. But they use a different completeness benchmark, which measures the complexity of correct models and not, as does our
completeness criterion, the complexity of the maximal intersection with the ground truth. Hence, regarding completeness, our results
differ from Swiatczak and Baumgartner’s.
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at prevalence extremes when models are built with standard consistency and coverage. Sec-
ond, when prevalence is balanced around 0.5, standard measures perform reliably; in fact,
any combination of sufficiency and necessity measures works roughly as well as any other.
Third, at prevalence extremes, three of the four tested combinations of adjusted sufficiency
and necessity measures outperform consistency and coverage.

At the same time, there are unanticipated findings. On the one hand, given the promise
that the new sufficiency and necessity measures have shown in section 4, we had reason
to expect that all four combinations of them would yield higher quality CNA outputs at
prevalence extremes. That does not materialize, as the combination of AAC-consistency and
AA-coverage underperforms. On the other hand, the extent to which the combination of PA-
consistency and PAC-coverage outperforms standard measures, rendering the correctness and
completeness of CNA’s output insensitive to prevalence extremes, is very impressive and
exceeds our expectations.

The crucial follow-up question now becomes whether this impressive result can be gen-
eralized from the specifics of our concrete simulation experiments to model building with
CNA in general. Should PA-consistency and PAC-coverage replace consistency and coverage
for model building purposes in all research contexts and data scenarios or only in some; and
if the latter, in which ones? To answer that question, we must consider to what degree the
limitations of our experiments impact generalizability.

A first limitation of our experiments is that, in order to keep the computational demand
manageable, the tested ground truths all have only a single outcome and their complexity is
restricted. However, we have no reason to suspect that the results for single-outcome ground
truths with limited complexity should not transfer to multi-outcome ground truths with higher
complexity. Single-outcome models are mere conjunctions of multi-outcome models. Hence,
if the former have higher quality when built with the new measures, the latter are also expected
to have higher quality. Moreover, analyzing ground truths with complex causes of more than
3 conjuncts and 5 disjuncts increases the computational burden but does not pose any quali-
tatively different challenges than the analysis of the causal structures in our test series. Also,
we see no significant differences in computation times between the five different experiments
in our series, implying that the new measures are not expected to impose higher computa-
tional demands when building highly complex models than the original measures. That is,
the complexity limitation of the ground truths in our experiments should not constrain the
generalizability of our results.

A second limitation is that we vary prevalence by purposefully duplicating and eliminat-
ing cases, resulting in frequency-induced prevalence variation only. However, prevalence in
real-life data can also vary because of the structural properties of the ground truth (see [37]
for a detailed discussion). The reason for our focus on frequency-induced prevalence varia-
tion is that ground truths with structural properties yielding extremely high or low prevalence
are rare. It is thus impractical to generate enough of these ground truths to obtain a suffi-
ciently large sample size for reasonably powered experiments. We also expect prevalence in
real-life data to be frequency-induced much more often than structure-induced. Besides, we
see no reason why structure-induced prevalence variation would affect sufficiency and neces-
sity measures in a different way than frequency-induced prevalence variation. We conclude
that the unilateral focus on frequency-induced prevalence variation, though a limitation of the
experiments, does not hinder the generalizability of our results.
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A third limitation is that we only manipulate outcome prevalence and not the frequency
of candidate causes, or more specifically, |Φ|

/
N . It might appear that manipulating preva-

lence rather than |Φ|
/
N biases the results in favor of PA-consistency and PAC-coverage,

which have weights that depend on prevalence and are designed to handle prevalence vari-
ation. However, note that these prevalence-adjusted measures are derived from consistency
and C-coverage, which are sensitive to prevalence in the first place. Consequently, as pushing
prevalence to extremes results in data that are problematic for the unadjusted counter-
parts of PA-consistency and PAC-coverage, our test design might also bias the experiments
against these measures. But even if there is an underlying bias, the extent to which PA-
consistency and PAC-coverage outperform standard consistency and coverage is so large that
it is implausible to arise exclusively due to bias. Hence, the combination of PA-consistency
and PAC-coverage can be expected to outperform standard measures also in contexts without
systematic prevalence variation. At the same time, it must be recognized that the performance
increase delivered by PA-consistency and PAC-coverage is surprisingly high. This suggests
that some of the other pairs of new sufficiency and necessity measures might also yield
surprising results if, instead of prevalence, we were to push the frequency of some of the can-
didate causes to extremes. Follow-up studies will be needed to investigate this question. Until
then, at least those three pairs of new measures that outperformed consistency and coverage
in our experiments should remain under consideration.

A fourth limitation is that all our experiments exclusively analyze crisp-set data, which
allow for the most streamlined discussion of methodological issues related to configurational
comparative methods in general, and evaluation measures in particular. But CNA can also
analyze multi-value and fuzzy-set data (cf. section 2). Although CNA processes all data types
with the same underlying algorithm, each type poses specific challenges. Multi-value data, for
instance, tend to have very low prevalence. The reason, in short, is that when factors can take
more than two values the total space of possible configurations is much larger, resulting in
each value being taken relatively less frequently; and since outcomes are factors taking values,
outcomes are less frequent, on average, in multi-value than in crisp-set data. In fact, we are
not aware of any multi-value study, using either QCA or CNA, with an outcome reaching a
prevalence of 0.8 or above. A possible consequence is that the combination of PA-consistency
and AA-coverage, which yields virtually no empty outputs at the lower prevalence spectrum
in our crisp-set test series, produces better overall CNA outputs for multi-value data than the
combination of PA-consistency and PAC-coverage, with a significantly lower ambiguity ratio
at low prevalence. In any case, our crisp-set results cannot easily be generalized to the multi-
value case. A separate study will be needed to determine which sufficiency and necessity
measures perform best when building models for multi-value data.

Fuzzy-set data have the particularity that the properties represented by fuzzy-set factors
are not mutually exclusive. In other words, it is possible for cases in the data to have non-
zero membership both in Φ and in ϕ, as well as in Y and in y. It follows that the proofs of
section 4—showing that the adjusted sufficiency and necessity measures go to 1/2 for crisp-
set (and multi-value) data when Φ and Y are independent—do not generalize to the fuzzy-set
case. Instead, to reach an expected value of 1/2 at independence, an additional correction
must be applied to the penalty terms of the adjusted measures. More concretely, the mean
of min(Φ, ϕ, Y, y) must be added to the numerator and subtracted from the denominator
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of the penalty weight. The term min(Φ, ϕ, Y, y) is always equal to 0 in crisp-set (or multi-
value) data, which is why it does not have to be included in the crisp-set formulations of the
measures. In some preliminary simulation experiments with fuzzy-set data, we have seen that
this correction often leads to very large or very small penalties, generating a lot of empty
outputs. It therefore needs to be relaxed in practice by means of a sensitivity hyperparameter.
We have experimented with some parameter settings, obtaining promising first results, which
however are not conclusive yet. More research is needed. Clearly though, the results from our
crisp-set experiments do not generalize to fuzzy-set data.

Overall, we conclude that the results reported in section 5 can be generalized beyond
our specific test design to all crisp-set applications of CNA. Across all possible prevalence
levels, crisp-set CNA outputs built by PA-consistency and PAC-coverage can be expected to
be of substantively higher quality than outputs built by standard consistency and coverage.
When prevalence is low, standard CNA outputs tend to be empty, and when prevalence is
high, standard outputs tend to be overfitted. By contrast, in all of these data scenarios, PA-
consistency and PAC-coverage enable CNA to reliably find correct and reasonably complete
models.

7 Outlook
Based on our results, we recommend that the four new adjusted measures all be made avail-
able in relevant CNA software [21] and that CNA users transition to building crisp-set models
using PA-consistency and PAC-coverage, especially if their data are affected by prevalence
imbalances. More research is needed before analogous recommendations can be made for
multi-value and fuzzy-set applications. Still, once all new measures are available in the CNA
software, we advise users to integrate the values of the new scores into their data analysis
routines also when analyzing multi-value or fuzzy-set data. The new measures can be valu-
able for model selection or cross-validation purposes, on par with existing solution attributes
such as complexity, exhaustiveness, or faithfulness [38]. Furthermore, we strongly encour-
age follow-up studies analogous to ours that focus on evaluating sufficiency and necessity in
multi-value and fuzzy-set analyses.

At the same time, our results should not be taken to imply that standard consistency and
coverage would no longer be valuable tools for crisp-set CNA. First, as we saw in section
5, all sufficiency and necessity measures, including consistency and coverage, yield CNA
outputs of about equal quality when prevalence is close to balanced, meaning that models
might just as well be built with consistency and coverage in these circumstances. Second,
consistency and coverage remain valuable for model evaluation and model selection—along
with C-consistency and C-coverage [27], case knowledge, and theoretical knowledge [3, p.
172]. Third, running complementary analyses using consistency and coverage in addition to
PA-consistency and PAC-coverage may facilitate cross-validation. Although more research
will be needed to determine exactly how much more reliable (a part of) a model is when it
is returned by more than one pair of sufficiency and necessity measures, we strongly suspect
that successful cross-validation delivers a substantive boost in reliability.

However, our results should be taken as a reason to reconsider the growing literature
on data imbalances in configurational comparative methods. The problems that prevalence
imbalances create for methods such as QCA and CNA have long been noticed and discussed
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in the literature [3, 37, 39], but they have typically been attributed to deficiencies in data col-
lection or calibration. That is, their source has been located in pre-analytic phases of QCA or
CNA studies. Our results show that it is possible to greatly mitigate the problems posed for
CNA by prevalence imbalances through suitable adjustments of the implemented sufficiency
and necessity measures. This locates the source of the problems within CNA’s analytic phase
itself. Consequently, collecting more data or re-calibrating the data are no longer the only
available responses when data are affected by prevalence imbalances. Instead, such imbal-
ances can newly also be addressed by choosing the right sufficiency and necessity measures.
Much more work will be needed in that area in the future. In particular, studies similar to ours
are needed that explore the potential to improve QCA’s performance through new sufficiency
and necessity measures. Consistency and coverage have a long, unquestioned, and unrivaled
status as gold standard for sufficiency and necessity evaluation in configurational compara-
tive methods, especially in crisp-set analyses. That status needs to be questioned. It is time to
seriously consider alternatives.
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