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Abstract

Coincidence Analysis (CNA) is a configurational comparative method of causal data

analysis that is related to Qualitative Comparative Analysis (QCA) but, contrary to

the latter, is custom-built for analyzing causal structures with multiple outcomes. So

far, however, CNA has only been capable of processing dichotomous variables, which

greatly limited its scope of applicability. This paper generalizes CNA for multi-value

variables as well as continuous variables whose values are interpreted as membership

scores in fuzzy sets. This generalization comes with a major adaptation of CNA’s al-

gorithmic protocol, which, in an extended series of benchmark tests, is shown to give

CNA an edge over QCA not only with respect to multi-outcome structures but also with

respect to the analysis of non-ideal data stemming from single-outcome structures. The

inferential power of multi-value and fuzzy-set CNA is made available to end users in

the newest version of the R package cna.

Keywords: configurational comparative methods, set-theoretic methods, Coincidence

Analysis, Qualitative Comparative Analysis, Boolean causation

1 Introduction

Since the mid-1980ies, different variants of configurational comparative methods (CCMs)

have gradually been added to the toolkit for causal data analysis in the social sciences. CCMs

are designed to investigate different hypotheses and uncover different properties of causal

structures than traditional regression analytical methods (RAMs) and, thus, complement the
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latter (rather than compete with them).1 RAMs examine covariation hypotheses as “the

more/less of X , the more/less of Y ” that link variables, and they quantify net-effects and

effect sizes. CCMs, by contrast, study implication hypotheses as “X=χi is (non-redundantly)

sufficient/necessary for Y =γi” that link specific values of variables. Moreover, instead of

quantifying effect sizes, CCMs place a Boolean ordering on sets of causes by locating their

elements on the same or different causal paths to the ultimate outcome. In other words,

while RAMs investigate the quantitative properties of causal structures as characterized by

statistical or probabilistic theories of causation (Simon 1954; Suppes 1970), CCMs scrutinize

their Boolean properties as described by regularity theories of causation (Mackie 1974).

The Boolean properties of causation encompass three complexity dimensions. The first

is conjunctivity: to bring about an effect, say, liberal democracy in early modern Europe

(D=1), different factors need to be instantiated (or not instantiated) jointly; for instance,

according to Downing’s (1992) theory of the origins of liberal democracy, a country must

have a history of medieval constitutionalism (C=1) and absent military revolutions (R=0)

(cf. Goertz 2006, 252-254). Only a coincident instantiation of the conjunction C=1∗R=0

produces the effect D=1. Disjunctivity is a second complexity dimension: an effect can be

brought about along alternative causal paths. Downing (1992, 78-79, 240) identifies four

paths leading to the absence of military revolution (R=0): a geography that deters invading

armies (G=1), commercial wealth (W=1), foreign resource mobilization (M=1), and foreign

alliances (A=1). Each condition in the disjunction G=1 + W=1 + M=1 + A=1 can bring

about the effect R=0 independently of the other conditions. The third complexity dimension

is sequentiality: effects tend to cause further effects, propagating causal influence along

causal chains. In Downing’s theory there are multiple chains, for instance, W=1 is causally

relevant to R=0, which, in turn, is causally relevant to D=1, or there is a chain from A=1

via R=0 to D=1. Overall, the theory entails the following Boolean causal model (cf. Goertz

2006, 254), where “→” stands for the Boolean operation of implication:

(G=1 + W=1 + M=1 + A=1 → R=0) ∗ (C=1∗R=0 → D=1) (1)

The most prominent CCM is Qualitative Comparative Analysis (QCA; Ragin 2008).

While the original variant of QCA introduced in Ragin (1987), crisp-set QCA (csQCA),

1This complementarian view is not uncontroversial. While Braumoeller and Goertz (2000) suggest RAM-
techniques to search for necessary conditions—a traditional search target of CCMs—, Clark, Gilligan, and
Golder (2006) argue that both necessary and sufficient conditions can be uncovered by means of RAMs. For a
detailed defence of the complementarian view see Thiem, Baumgartner, and Bol (2016).
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is restricted to modeling dichotomous variables, there meanwhile exist fully worked out

variants that can process multi-value variables, multi-value QCA (mvQCA) (Cronqvist and

Berg-Schlosser 2009), and variables with continuous values from the unit interval, fuzzy-set

QCA (fsQCA) (Ragin 2009). However, all QCA variants focus on the complexity dimen-

sions of conjunctivity and disjunctivity only, as QCA treats exactly one factor as endogenous

and all other analyzed factors as exogenous. QCA will thus not find a chain model as (1).2

In light of this restriction, Baumgartner (2009a, 2009b) introduced a new configura-

tional comparative method called Coincidence Analysis (CNA). As a member of the family

of CCMs, CNA—just like QCA—investigates implication hypotheses and scrutinizes the

Boolean properties of causation. Contrary to QCA, however, CNA is capable of analyz-

ing multi-outcome structures and, hence, of uncovering all Boolean complexity dimensions:

conjunctivity, disjunctivity and sequentiality. CNA thus recovers chain models as (1).

So far, though, CNA has only been available in a crisp-set variant (csCNA). This paper

removes that limitation by generalizing the method for multi-value variables (mvCNA) and

variables with continuous values from the unit interval that are interpreted as membership

scores in fuzzy sets (fsCNA). This generalization comes with a major adaptation of the ba-

sic algorithmic protocol on the basis of which CNA builds causal models. In a nutshell,

while CNA so far—just like QCA—adopted a top-down approach to model building that

first identifies complete sufficient and necessary conditions of outcomes and then gradually

eliminates redundant elements, the generalized variant of CNA uses a bottom-up approach

that progressively combines factor values to complex but redundancy-free sufficient and nec-

essary conditions.

The CNA algorithm presented here has been implemented in a new version of the R pack-

age cna, version 2.1 (Ambuehl and Baumgartner 2018), which makes the whole inferential

power of mvCNA and fsCNA available to end-users. By drawing on this software package

and the currently most reliable R package for QCA, QCApro (Thiem 2018),3 the paper also

performs a whole battery of benchmark tests that evaluate and compare the performance of

CNA and QCA when applied to data with varying forms of data deficiencies. The test series

reveals that the reversal of the basic model building approach gives CNA an edge over QCA

2In a recent comment on CNA, Thiem (2015) argues that QCA is not necessarily tied to an algorithm that
is restricted to single-outcome structures. Thiem then suggests a QCA approach to searching for chains that
much resembles CNA.

3 Recently, version 3.2 of the QCA R package (Duşa 2007) has been published, which introduces very
promising new functionalities. However, the default parameter settings of that package version are still such
that, too often, many data-fitting models are not recovered.
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not only with respect to multi-outcome structures but also with respect to the analysis of

non-ideal data stemming from single-outcome structures.

The paper is organized as follows. Section 2 introduces the theoretical background of

CNA, its main input parameters, and exhibits CNA’s potential and limitations. The general-

ization of the CNA algorithm is presented in section 3. Section 4 reports the results of the test

series evaluating and comparing CNA and QCA. A replication script detailing all analytical

steps is provided in the Appendix.

2 Theoretical background

2.1 Boolean difference-making

As all CCMs, CNA searches for causal dependencies as defined by so-called regularity the-

ories of causation, whose development dates back to Hume (1748) and Mill (1843). Modern

regularity theories define causation in terms of Boolean difference-making within a fixed

causal background. More specifically, X=χi is a regularity theoretic cause of Y =γi if there

exists a (fixed) configuration of background conditions F such that, in F , a change from

X=χi to X=χk, where χi 6= χk, is systematically and non-redundantly associated with a

change from Y =γi to Y =γk, where γi 6= γk. If X=χi does not make a difference to Y =γi in

any context F , X=χi is redundant to account for Y =γi and, thus, no cause of Y =γi (Mackie

1974; Graßhoff and May 2001; Baumgartner 2013).

To render that idea more precise, some conceptual preliminaries are required. Regularity

theoretic causation holds between variables/factors taking on specific values. (We will use

the terms “variable” and “factor” interchangeably.) Factors represent categorical properties

that partition sets of units of observation (cases) either into two sets, in case of binary proper-

ties, or into more than two (but finitely many) sets, in case of multi-value properties. Factors

representing binary properties can be crisp-set (cs) or fuzzy-set (fs); the former can take on

0 and 1 as possible values, whereas the latter can take on any (continuous) values from the

unit interval. Factors representing multi-value properties are called multi-value (mv) factors;

they can take on any of an open (but finite) number of possible values {0, 1, 2, . . . , n}. Values

of a cs or fs factor X are interpretable as membership scores in the set of cases exhibiting

the property represented by X . As is conventional in Boolean algebra, we shall abbreviate

membership in a set by upper case and non-membership by lower case Roman letters; that

is, we write “X” for X=1 and “x” for X=0. An alternative interpretation, which lends itself

particularly well for causal modeling, is that “X” stands for the presence of the factor X and
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“x” for its absence. In case of mv factors, we will not abbreviate value assignments and,

instead, use the explicit ‘Variable=value’ notation by writing, say, “X=3” for X taking the

value 3.

Apart from the Boolean operations of conjunction, disjunction, and negation, whose clas-

sical definitions are presupposed here, the implication operator “→” and the equivalence

operator “↔” are of core importance for the regularity theoretic definition of causation. Ac-

cording to a classical interpretation, an expression as “X=3 → Y =4” states that whenever

X takes the value 3, Y takes 4; or “X → Y ” states that wheneverX is present, Y is present.

These claims are true if, and only if (iff), there is no case satisfying the left-hand side of “→”

and not satisfying the right-hand side. Furthermore, “X=3 ↔ Y =4” and “X ↔ Y ” are

true iff the implication holds both ways, meaning that all cases satisfying the left-hand side

of “↔” also satisfy the right-hand side, and vice versa.

For the subsequent generalization of CNA for fs factors the classical Boolean opera-

tions must be translated into fuzzy logic. There exist numerous systems of fuzzy logic (for

an overview cf. Hájek 1998), each of which comes with its own rendering of Boolean op-

erations. We will adopt the following fuzzy-logic renderings, which have become standard

in the context of CCMs: conjunction X∗Y is defined in terms of the minimum membership

score in X and Y , i.e. min(X, Y ), disjunction X +Y in terms of the maximum membership

score in X and Y , i.e. max(X, Y ), negation ¬X (or x) in terms of 1 − X , an implication

X → Y is taken to express that the membership score inX is smaller or equal to Y (X ≤ Y ),

and an equivalence X ↔ Y that the membership scores in X and Y are equal (X = Y ).

Based on the implication operator the notions of sufficiency and necessity are defined,

which are the two Boolean dependencies exploited by regularity theories: X is sufficient for

Y iff X → Y holds; and X is necessary for Y iff Y → X holds. Analogously, the more

complex expression X=3 + Z=2 is sufficient and necessary for Y =4 iff X=3 + Z=2 ↔
Y =4 holds.

Boolean dependencies of sufficiency and necessity amount to mere patterns of co-

occurrence of factor values; as such, they carry no causal connotations whatsoever. In fact,

most Boolean dependencies do not reflect causal dependencies. For that reason, regularity

theories rely on a non-redundancy principle as an additional constraint to filter out those

relations of sufficiency and necessity that are due to underlying causal dependencies: A

Boolean dependency structure is causally interpretable only if it does not contain any redun-

dant elements. Causes are those elements of sufficient and necessary conditions for which at

least one configuration of background conditions F exists in which they are indispensable to

account for a scrutinized outcome. In other words, whatever can be removed from sufficient
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and necessary conditions without affecting the latter’s sufficiency and necessity is redun-

dant and, therefore, not causally interpretable. Only sufficient and necessary conditions

that are completely free of redundant elements, viz. minimal, possibly reflect causation

(Baumgartner 2014).

2.2 Boolean causal models

Modern regularity theories formally cash this idea out on the basis of the notion of a minimal

theory. There are atomic and complex minimal theories. An atomic minimal theory of an

outcome Y is a minimally necessary disjunction of minimally sufficient conditions of Y

(Graßhoff and May 2001). A conjunction Φ of coincidently instantiated factor values (e.g.

X1∗X2∗ . . . ∗Xn) is a minimally sufficient condition of Y iff Φ is sufficient for Y (Φ → Y ),

and there does not exist a proper part Φ′ of Φ such that Φ′ → Y . A proper part Φ′ of Φ

is the result of eliminating one or more conjuncts from Φ. A disjunction Ψ of minimally

sufficient conditions (e.g. Φ1 + Φ2 + . . . + Φn) is a minimally necessary condition of Y iff

Ψ is necessary for Y (Y → Ψ), and there does not exist a proper part Ψ′ of Ψ such that

Y → Ψ′. A proper part Ψ′ of Ψ is the result of eliminating one or more disjuncts from Ψ.

Overall, an atomic minimal theory of Y states an equivalence of the form Ψ ↔ Y (where Ψ

is an expression in disjunctive normal form4 and Y is a single factor value). Atomic minimal

theories can be conjunctively concatenated to form complex minimal theories.

Minimal theories connect Boolean dependencies, which—by themselves—are purely

functional and non-causal, to causal dependencies: those, and only those, Boolean dependen-

cies that appear in minimal theories can stem from underlying causal dependencies. Atomic

minimal theories stand for causal structures with one outcome, complex theories represent

multi-outcome structures. To further clarify the causal interpretation of minimal theories,

consider the following complex exemplar:

(A∗b + a∗B ↔ C) ∗ (C∗f + D ↔ E) (2)

Functionally put, (2) claims that the presence of A in conjunction with the absence of B (i.e.

b) as well as a in conjunction withB are two alternative minimally sufficient conditions ofC,

and that C∗f andD are two alternative minimally sufficient conditions of E. Moreover, both

A∗b + a∗B and C∗f + D are claimed to be minimally necessary for C and E, respectively.

Against the background of a regularity theory, these functional relations entail the following

4A Boolean expression is said to be in disjunctive normal form iff it is a disjunction of one or more
conjunctions of one or more literals.
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causal claims: (i) the factor values listed on the left-hand sides of “↔” are directly causally

relevant for the factor values on the right-hand sides; (ii) A and b are located on the same

causal path to C, which differs from the path on which a and B are located, and C and f

are located on the same path to E, which differs from D’s path; (iii) A∗b and a∗B are two

alternative indirect causes of E whose influence is mediated on a causal chain via C. More

generally put, minimal theories ascribe causal relevance to their constitutive factor values,

place them on the same or different paths to the outcomes, and distinguish between direct

and indirect causal relevancies. That is, they render transparent the three Boolean complex-

ity dimensions of causality—which is why we shall likewise refer to minimal theories as

Boolean causal models.

Two fundamentals of the interpretation of Boolean causal models must be emphasized.

First, ordinary Boolean models make claims about causal relevance but not about causal

irrelevance. With some additional constraints that are immaterial for our current purposes

(for details see Baumgartner 2013), a regularity theory defines X1 to be a cause of an out-

come Y iff there exists a fixed configuration of context factors F = X2∗ . . . ∗Xn in which

X1 makes a difference to Y—meaning that X1∗F and x1∗F are systematically associated

with different Y -values. While establishing causal relevance merely requires demonstrating

the existence of at least one such difference-making context, establishing causal irrelevance

would require demonstrating the non-existence of such a context, which is impossible on the

basis of the non-exhaustive data samples that are typically analyzed in observational studies.

Correspondingly, the fact that, say, G does not appear in (2) does not imply G to be causally

irrelevant to either C or E. The non-inclusion of G simply means that the data from which

model (2) has been derived do not contain evidence for the relevance of G. However, future

research having access to additional data might reveal the existence of a difference-making

context for G and, hence, entail the causal relevance of G to C or E after all.

Second, Boolean models are to be interpreted relative to the data set δ from which they

have been derived. They do not purport to reveal all of an underlying causal structure’s

Boolean properties but only detail those causally relevant factor values along with those con-

junctive, disjunctive, and sequential groupings for which δ contains evidence. By extension,

two different Boolean models mi and mj derived from two different data sets δi and δj are

in no disagreement if the causal claims entailed by mi and mj stand in a subset relation. For

example, model (3) does not conflict with model (2):

(A + B ↔ C) ∗ (C + D ↔ E) (3)
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(3) identifies A and B as alternative direct causes of C and indirect causes of E, moreover

C and D are claimed to be alternative direct causes of E. All of this also follows from (2).

The causal claims entailed by (3) thus constitute a subset of the claims entailed by (2). The

two models describe properties of one and the same underlying causal structure at different

degrees of detail and relative to different data δ(2) and δ(3).

2.3 Data, consistency, coverage

CCMs analyze configurational data δ that have the form of m × k matrices, where m is

the number of units of observation (cases) and k is the number of factors. We subsequently

refer to the set of factors F in an analyzed δ as the factor frame of the analysis. While QCA

requires that F be partitioned—prior to the analysis—into a first subset {Y } comprising ex-

actly one endogenous factor and a second subset F \ {Y } comprising all exogenous factors

of the analysis, CNA can dispense with such a partition. If prior causal knowledge is avail-

able as to what factors in F are possible effects and what factors can be excluded as effects,

this information can be given to CNA via an optional argument called a causal ordering. A

causal ordering is a relation Xi ≺ Xj defined on the elements of F entailing that Xj can-

not be a cause of Xi (e.g. because Xi is instantiated temporally before Xj). If an ordering

is provided, CNA only searches for Boolean models in accordance with the ordering; if no

ordering is provided, CNA treats all values of the factors in F as potential outcomes and

explores whether a causal model for them can be inferred from δ.

As real-life data tend to feature noise induced by unmeasured causes of endogenous

factors, strictly sufficient or necessary conditions for an outcome Y often do not exist. To

still extract some causal information from such data, Ragin (2006) has imported consistency

and coverage measures (with values from the interval [0, 1]) into the QCA protocol. Both

of these measures are also serviceable for the purposes of CNA. Informally put, consistency

(con) reproduces the degree to which the behavior of an outcome obeys a corresponding

sufficiency or necessity relationship or a whole model, whereas coverage (cov) reproduces

the degree to which a sufficiency or necessity relationship or a whole model accounts for the

behavior of the corresponding outcome (for formal definitions see Baumgartner and Ambühl

2018, §3.2.) If no (strictly Boolean) relations of sufficiency and necessity with con = 1 and

cov = 1 can be inferred from δ, CNA invites its users to lower the consistency and coverage

thresholds cont and covt. For example, by lowering cont to 0.8, CNA is given permission to

treat X as sufficient for Y , even though in 20% of the cases X is not associated with Y . Or
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by lowering covt to 0.8, CNA is allowed to treat X as necessary for Y , even if 20% of the

cases featuring Y do not feature X .

Lowering cont and covt must be done with great caution, for the lower these thresholds,

the higher the chance that causal fallacies are committed. In QCA, however, it is common

to only impose lowest bounds—e.g. 0.75—for the consistency of configurations comprising

all exogenous factors, so-called minterms. This approach does not guarantee that the consis-

tencies of issued minimally sufficient conditions (or prime implicants, as they are called in

QCA) and of resulting Boolean models are also above the chosen threshold. Accordingly,

the models output by QCA often do not meet the consistency threshold set by the user (cf.

the replication script for examples). Moreover, it is common QCA practice not to require

lowest bounds for coverage. In consequence, QCA models frequently cover less than half of

the cases featuring the outcome in δ.

In CNA, the consistency and coverage standards are higher—for two reasons. First,

the sufficient conditions that are ultimately causally interpreted by CCMs are not minterms

(which are mere intermediate calculation devices for QCA) but redundancy-free conditions

contained in Boolean models. Hence, consistency thresholds must be imposed on the latter,

not on the former. Second, a model’s coverage being low means that it only accounts for

few instances of an outcome in δ. Or differently, in many cases in δ where the outcome

is present there are causes at work that are not contained (i.e. unmeasured) in the factor

frame F. However, unmeasured causes tend to confound δ—in particular, when they are

associated with both exogenous and endogenous factors in F. The presence of confounders

casts doubts on the causal interpretability of all dependencies manifest in δ, for uncontrolled

causes might be covertly responsible for them. That is, the more likely it is that the data

are confounded, the less reliable a causal interpretation of resulting models becomes. The

higher the coverage, the less likely it is that we are facing data confounding, the more reliable

a causal interpretation of issued models becomes. Hence, CNA aims to maximize both the

consistency and coverage scores.

2.4 Homogeneity, model ambiguities, correctness

While high consistency and coverage scores increase the reliability of resulting models, they

do not guarantee their correctness. To get a clear understanding of the scope, inferential

potential, and limitations of CNA, this subsection spells out what can and what cannot be

expected of CNA. More specifically, we explain what it means for the output of CNA to be

correct and under what conditions CNA will certainly produce a correct output.
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Very generally put, to say that CNA—or any other method—is a correct procedure of

causal inference means that the causal conclusions it draws from data δ are true of the δ-

generating causal structure ∆. This general characterization calls for two specifications.

First, no method can be expected to systematically infer true models from deficient data.

Whether data meet required quality standards depends on whether they faithfully reflect

the causal structure that generated them. But since this structure is unknown in real-life

discovery contexts, data quality cannot be assessed analytically but must be imposed by

assumption (Cartwright 1989, 55-90). Even heuristics designed to ensure compliance with

these assumptions, such as randomization and experimental control, cannot eliminate the

risk of insufficient data quality. Accordingly, all procedures of causal inference come with a

set of background assumptions, and are only guaranteed to produce correct results provided

these assumptions are satisfied.

While in most methodological traditions, the details of these background assumptions

are thoroughly investigated and debated, the CCM literature has largely sidestepped this im-

portant issue so far. We cannot exhaustively fill this gap here (which would require a study

in its own right), but still want to provide one background assumption—the configurational

homogeneity assumption—which is sufficient to ensure the correctness of CCMs by ensuring

that the analyzed data are not confounded (cf. Baumgartner 2009a).5 Generally put, config-

urational data are confounded iff unmeasured causes change between observed cases in such

a way that variations in the outcomes appear to be due to the measured factors, whereas they

are actually due to the changing unmeasured causes. Factors that can induce confounding

are unmeasured causes of a scrutinized outcome Y that change the value of Y in a way that is

not mediated through the measured factors in an analyzed frame F, i.e. causes of Y that are

connected to Y on at least one causal path that does not go through the elements of F—so-

called off-F-path causes of Y .6 Changes in off-F-path causes of Y can bring about changes

in Y that are erroneously ascribed to a measured factor that merely happens to co-vary with

Y without being causally relevant to Y . Configurational data δ are not confounded if all

off-F-path causes of Y remain constant across all cases in δ. Accordingly, an assumption

5We have to leave it to future research to determine whether the homogeneity assumption is also necessary
for that purpose, or whether there exist alternative, possibly weaker assumptions that could likewise guarantee
CNA’s correctness. Moreover, note that data confounding is, of course, not the only data deficiency that can in-
duce causal fallacies, errors of data collection (e.g. measurement error or selection bias) being another common
type of data deficiency. For the purposes of this paper, we bracket errors of data collection by assuming that
data have been faultlessly collected. Likewise, we do not consider misapplications of the method as a possible
source of causal fallacies.

6This terminology is derived from Woodward’s (2003, 59-60) notion of an off-path variable.
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that is sufficient to exclude confounding stipulates that δ are homogenous in the following

sense:

Configurational Homogeneity (CH): Configurational data δ for an outcome Y over a fac-

tor frame F are homogenous iff every off-F-path cause of Y remains constant in all

cases in δ.

Requiring δ to be homogenous in this sense amounts to a strong assumption that may

be difficult to justify in observational studies. In fact, as anticipated at the end of the previ-

ous section, whenever the coverage of resulting models is non-perfect, it follows that con-

founders are operative, meaning that CH is violated. A violation of CH, however, does not

entail that causal inferences are impossible or that incorrect models will automatically be

generated, it only follows that the correctness of resulting models is no longer guaranteed.

Depending on how much risk a researcher is willing to take in a given discovery context,

higher or lower degrees of CH-violations (e.g. visible in coverage scores) will induce her to

abstain from a causal inference. On a par with background assumptions in other method-

ological frameworks, the function of CH is not to determine when causal inferences are

possible but merely to guarantee the correctness of resulting models. If data δ are homoge-

nous, it follows that all observed differences in the outcomes must be due to variations of the

measured factors, which, in turn, ensures that CNA cannot commit fallacies by ascribing the

difference-making relations it uncovers to causal influences of the measured factors.

The second necessary specification of the rough characterization of the correctness cri-

terion concerns the phenomenon of model ambiguities. There often exist multiple causal

models that fit data equally well, to the effect that the data underdetermine their own causal

modeling. Model ambiguities are a very common phenomenon in all methodological tradi-

tions (Simon 1954; Spirtes et al. 2000, 59-72; Baumgartner and Thiem 2017a). Of course,

CNA—on a par with any other method—cannot disambiguate what is empirically underde-

termined. Rather, it must draw those and only those causal conclusions for which the data de

facto contain evidence. In cases of empirical underdetermination it must, therefore, render

transparent all data-fitting models (and leave the disambiguation up to the analyst). Multi-

ple models in a CNA output are to be interpreted disjunctively, meaning that if, say, three

models m1, m2, and m3 are returned, CNA determines that the data-generating structure

has the form of m1 or that of m2 or that of m3. Such a disjunction is true iff at least one
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disjunct is true. Hence, in order for CNA to pass as a correct method of causal inference the

data-generating structure must be truthfully reflected by at least one generated model.7

Overall, for CNA—or any other CCM—to be a correct method of causal inference it

is required that at least one model inferred from homogenous data truthfully reflects the

Boolean causal properties of the data-generating structure. More explicitly:

Configurational Correctness (CC): A configurational comparative method P is a correct

procedure of causal inference iff, whenever P infers a set of models M from data δ

which comply with CH, (at least) one model mi ∈ M satisfies the following four

conditions:

(1) all values of exogenous factors contained in mi are causally relevant for the cor-

responding outcome in the δ-generating structure ∆;

(2) if X1 and X2 are contained in two different disjuncts in mi, then X1 and X2 are

located on two different causal paths in ∆;

(3) if X1 and X2 are contained in the same conjunct in mi, then X1 and X2 are part

of the same complex cause in ∆;

(4) if X1 and X2 are two links of a causal chain in mi, then X1 and X2 are two links

of a causal chain in ∆.

To a model mi that truthfully reflects ∆ by complying with conditions CC(1) to CC(4) we

shall, for brevity, also refer as a correct model.

We claim that CNA is a correct procedure in the sense defined by CC and will provide

substantive evidence for this in section 4. For now, two aspects of this claim deserve sep-

arate emphasis. First, that CNA is correct does not entail that it infers causal models from

every data input. Data may be insufficient to warrant any causal inference. Whenever CNA

abstains from an inference, it cannot commit a causal fallacy. By extension, correctness can-

not be violated. Configurational causal modeling imposes very high quality standards on the

processed data. If these standards are not met, a reliable CCM must refrain from drawing

inferences. As anticipated in the previous section, CNA adopts a much more risk-averse

approach in dealing with data deficiencies than QCA. While the latter does not impose a

coverage threshold at all and often causally interprets minimally sufficient conditions that
7An analogous correctness benchmark is implemented in other methodological traditions. Spirtes et al.

(2000, 81), for instance, require that a correct method returns a pattern of models (i.e. not an individual model)
that represents the faithful indistinguishability class of data-fitting models, where a pattern is a disjunction (or
class) of models. Similarly, Kalisch et al. (2012, 7), who require their procedures to only report the equivalence
class of models in which the true model must lie.
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do not meet the consistency threshold, the former uses both consistency and coverage as au-

thoritative model building criteria such that, if they are not met, CNA abstains from a causal

inference. It is better not to draw a causal inference than to draw a hazardous one.

Second, that CNA is a correct method does not entail that it always completely uncov-

ers the data-generating structure ∆. Real-life data tend to be fragmentary, meaning they

do not contain all configurations that are empirically possible, that is, compatible with ∆.8

Fragmentary data may not contain evidence for certain features of ∆, and no method can

compensate for lacking evidence. Correctness merely demands that, if CNA outputs a set

M, then at least one model mi ∈ M be such that all causal properties represented by mi

truthfully reflect some causal properties of ∆. At the same time, if CNA is given exhaustive

data featuring all empirically possible configurations, CNA should completely uncover ∆.

That is, completeness is imposed as a conditional criterion: if CNA is given exhaustive data

in compliance with CH, the Boolean causal properties represented by at least one model

mi ∈M truthfully reflect all Boolean causal properties of ∆.9

Since data fragmentation is ubiquitous in observational studies, procedures employed in

this domain usually will only uncover a proper part of ∆. Still, if the data δ are fragmentary,

CNA will uncover all those parts of ∆ for which δ contain evidence, no fewer and no more.

More specifically, although CNA is not unconditionally complete, it is unconditionally infor-

mative in the following sense: all and only those Boolean causal properties of ∆ for which δ

contain evidence are truthfully reflected by at least one model mi ∈M.

3 Generalizing the CNA algorithm

3.1 Top-down vs. bottom-up search

The goal of CCMs is to infer Boolean causal models from configurational data. The previous

section has shown that Boolean functions are amenable to a causal interpretation only if they

8Data fragmentation, as we use the term here, is related but not synonymous to limited diversity, a concept
known from QCA (e.g. Ragin 2008, 147-148). QCA-processed data are said to be limitedly diverse iff they
do not contain all logically possible configurations of the exogenous factors. CNA, by contrast, allows for the
factors that are exogenous with respect to some ultimate outcome to be mutually causally dependent, in which
case not all logically possible configurations are also empirically possible. Accordingly, we say that data are
fragmentary iff they do not contain all empirically possible configurations.

9In Baumgartner (2009a), an assumption of empirical exhaustiveness (PEX) is introduced to ensure that
CNA-processed data is non-fragmentary and that ∆ could be completely uncovered. We dispense with that
assumption here. As a result, CNA will not always completely uncover ∆.
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identify redundancy-free sufficient and necessary conditions, and thus amount to minimal

theories that reach imposed consistency (cont) and coverage (covt) thresholds.

There exist two different strategies for building minimal theories: they can be built from

the top down or from the bottom up. The top-down approach proceeds as follows. First,

complete sufficient minterms are identified that meet cont; second, elements are eliminated

as redundant as long as the remaining conditions continue to satisfy cont; third, the min-

imally sufficient conditions are disjunctively combined to necessary conditions that meet

covt; fourth, elements are eliminated as redundant that are not required to satisfy covt. By

contrast, the bottom-up approach starts with single factor values and tests whether they meet

cont; if that is not the case, it proceeds to test conjunctions of two factor values, then to

conjunctions of three, and so on. Whenever a conjunction meets cont (and no proper part

of it has previously been identified to meet cont), it is automatically redundancy-free, that

is, a minimally sufficient condition (MSC), and supersets of it do not need to be tested for

sufficiency any more. Then, the bottom-up approach tests whether single MSC meet covt; if

not, it proceeds to disjunctions of two, then to disjunctions of three, and so on. Whenever a

disjunction meets covt (and no proper part of it has previously been identified to meet covt),

it is automatically redundancy-free, viz. a minimally necessary condition, and supersets of it

do not need to be tested for necessity.

Both QCA and the original variant of csCNA adopt versions of the top-down approach—

albeit in very different algorithmic implementations (cf. Baumgartner 2014). By contrast,

the generalization of CNA developed here reverses the direction of model building. Prima

facie, it might seem that it does not matter whether models are built from the top down

or from the bottom up because both directions should ultimately lead to the same results.

Although that is indeed the case for some data types, in particular for ideal data, it does not

hold generally. For instance, when applied to data that do not allow for modeling outcomes

with perfect consistency, it can happen that—contrary to the bottom-up approach—the top-

down approach does not succeed in eliminating all redundancies from sufficient conditions.

The reason is that when building models from the top down it is (implicitly) presumed that

consistency threshold violations are monotonic in the following sense: if a factorC cannot be

eliminated from a sufficient conditionA∗B∗C becauseA∗B alone does not meet cont, thenC

plus some further factor from A∗B cannot be eliminated either. Therefore, if eliminating C

from A∗B∗C leads to a violation of cont, the top-down approach concludes that C is needed

to account for the outcome, meaning C is a difference-maker. That conclusion, however, is

not valid, because consistency threshold violations are not monotonic.
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A B C D n
1 1 1 1 3
1 1 1 0 1
1 1 0 1 5
1 1 0 0 2
1 0 1 0 1
1 0 0 1 7
0 1 1 0 4
1 0 0 0 1
0 0 0 0 3

(a)

A B C D
1.00 1.00 0.60 1.00
1.00 1.00 0.40 1.00
0.40 1.00 0.40 0.10
1.00 0.30 0.30 0.00

(b)

A B C OUTD n con
1 1 1 0 1 0.647
1 1 0 0 1 0.647
0 1 0 0 1 0.167
1 0 0 0 1 0.000

(c)

Table 1: Table (a) is a cs data matrix, where the right-most column lists the number of cases
featuring a configuration and D is the outcome. Table (b) is an fs data matrix with outcome
D, and (c) the corresponding QCA truth table at cont = 0.75.

To see this, consider the data matrix in Table 1(a), for which the following consistencies

hold:
con(A∗B∗C → D) = 3/4 = 0.75

con(A∗B → D) = 8/11 = 0.73

con(A→ D) = 15/20 = 0.75

That is, if cont is set to 0.75, the conditionA∗B∗C, which is sufficient forD with con = 0.75,

satisfies the threshold. By contrast, A∗B, which results from A∗B∗C by eliminating C, falls

short of cont. Nonetheless, further eliminating B lifts the remaining condition above cont

again, as A alone is sufficient for D with con = 0.75. That means, while C initially appears

to be a non-redundant element of the sufficient conditionA∗B∗C, it turns out to be redundant

after all. The top-down approach, however, only tests the removability of single factors at

a time and infers that a condition is redundancy-free if removing single factors would push

that condition below cont. Therefore, at cont = 0.75, a procedure that adopts the top-down

approach as QCA issues model (4) for Table 1(a).

A∗b∗c + A∗B∗C → D con = 0.83; cov = 0.67 (4)

In contrast, by first testing whether single factors meet cont, the bottom-up approach

directly finds that A itself is sufficient for D. Moreover, it turns out that A is necessary for

D, as it accounts for D with perfect coverage. Overall, at cont = 0.75, a procedure that

builds models from the bottom up issues model (5).
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A↔ D con = 0.75; cov = 1 (5)

(5) is preferable to (4), for two reasons. First, the product of consistency and coverage,

which is a common measure for overall model fit, is significantly higher for (5). Second,

model (5) only ascribes causal relevance to A, whereas (4) also determines B, C and their

negations to be causes of D, even though the data in Table 1(a) do not contain evidence that

these factors actually make a difference to D at cont = 0.75. Hence, when applied to noisy

data, the top-down approach runs a risk of drawing causal inferences that go beyond the data.

Also, the top-down approach may abandon an analysis prematurely. To see this, consider

the fs data in Table 1(b), where D is the outcome.10 The four configurations in that data

have the consistencies listed in the last column of the QCA truth table in Table 1(c), meaning

that, if cont is set to 0.75, none of the configurations are sufficient for the outcome. A top-

down procedure as QCA abandons the analysis at this point. That, however, is unwarranted

because there in fact exists a Boolean model for D that meets cont = 0.75 and moreover

reaches perfect coverage:

A∗B ↔ D con = 0.78; cov = 1 (6)

By starting the analysis with single factors, the bottom-up approach finds model (6) in the

second iteration.

To avoid the problems of the top-down approach, the generalization of CNA developed

in this paper builds models from the bottom up.

3.2 The essentials of the CNA algorithm

The generalized CNA algorithm takes as mandatory inputs (i) a data set δ, (ii) cont and covt
thresholds, and (iii) an upper bound called maxstep for the maximal complexity of atomic

solution formulas (atomic causal models) to be built. Maxstep serves the pragmatic purpose

of keeping the search space computationally tractable in reasonable time. The user can set it

to any complexity level if computational time is not an issue. Optionally, CNA can be given

a causal ordering as introduced in section 2.3.

Contrary to QCA, which first transforms the data into an intermediate calculative device

called a truth table, the CNA algorithm operates directly on the data. Data processed by CNA

can either be of type “crisp-set” (cs), “multi-value” (mv) or “fuzzy-set” (fs). Examples of

each data type are given in Table 2. In what follows, we first discuss the generalized CNA

10We thank Tim Haesebrouck for this example.
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A B C D
c1 0 0 0 0
c2 0 1 0 0
c3 1 1 0 0
c4 0 0 1 0
c5 1 0 0 1
c6 1 0 1 1
c7 0 1 1 1
c8 1 1 1 1

(a) cs data

A B C D
c1 1 3 3 1
c2 2 2 1 2
c3 2 1 2 2
c4 2 2 2 2
c5 3 3 3 2
c6 2 4 3 2
c7 1 3 3 3
c8 1 4 3 3

(b) mv data

A B C D E
c1 0.17 0.02 0.15 0.26 0.09
c2 0.97 0.23 0.73 0.08 0.10
c3 0.10 0.72 0.61 0.38 0.08
c4 0.64 0.73 0.82 0.12 0.66
c5 0.11 0.30 0.06 0.99 0.78
c6 0.69 0.23 0.91 0.98 0.84
c7 0.31 0.80 0.62 0.65 0.74
c8 0.65 0.87 0.92 0.82 0.85

(c) fs data

Table 2: Data types that can be analyzed by CNA.

algorithm in the abstract, using the explicit ‘Variable=value’ notation, and then we illustrate

its procedural steps on the basis of the fs data in Table 2(c).

CNA causally models configurational data δ over a factor frame F in four stages:

Stage 1 On the basis of a provided ordering, CNA first builds a set of potential outcomes

O = {Oh=ωf , . . . , Om=ωg} from the factor frame F = {O1, . . . , On} in δ, where

1 ≤ h ≤ m ≤ n, and second assigns a set of potential cause factors COi
from F\{Oi}

to every element Oi=ωk of O. If no ordering is provided, all value assignments to all

elements of F are treated as possible outcomes in case of mv data, whereas in case of

cs and fs data O is set equal to {O1=1, . . . , On=1}.

Stage 2 CNA attempts to build a set MSCOi=ωk
of minimally sufficient conditions that meet

cont for each Oi=ωk ∈ O. To this end, it first checks for each value assignment

Xh=χj of each element of COi
, such that Xh=χj has a membership score above 0.5 in

at least one case in δ, whether the consistency of Xh=χj → Oi=ωk in δ meets cont,

i.e. whether con(Xh=χj → Oi=ωk) ≥ cont. If, and only if, that is the case, CNA puts

Xh=χj into the set MSCOi=ωk
. Next, CNA checks for each conjunction of two factor

values Xm=χj ∗Xn=χl from COi
, such that Xm=χj ∗Xn=χl has a membership score

above 0.5 in at least one case in δ and no part of Xm=χj ∗Xn=χl is already contained

in MSCOi=ωk
, whether con(Xm=χj ∗Xn=χl → Oi=ωk) ≥ cont. If, and only if, that

is the case, CNA puts Xm=χj ∗Xn=χl into the set MSCOi=ωk
. Next, conjunctions

of three factor values with no parts already contained in MSCOi=ωk
are tested, then

conjunctions of four factor values, etc., until either all logically possible conjunctions

of the elements of COi
have been tested or maxstep is reached. Every non-empty

MSCOi=ωk
is passed on to the third stage.
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Stage 3 CNA attempts to build a set ASFOi=ωk
of atomic solution formulas (atomic causal

models) for every Oi=ωk ∈ O, which has a non-empty MSCOi=ωk
, by disjunctively

concatenating the elements of MSCOi=ωk
to minimally necessary conditions of Oi=ωk

that meet covt. To this end, it first checks for each single condition Φh ∈ MSCOi=ωk

whether cov(Φh → Oi=ωk) ≥ covt. If, and only if, that is the case, CNA puts Φh

into the set ASFOi=ωk
. Next, CNA checks for each disjunction of two conditions Φm +

Φn from MSCOi=ωk
, such that no part of Φm + Φn is already contained in ASFOi=ωk

,

whether cov(Φm + Φn → Oi=ωk) ≥ covt. If, and only if, that is the case, CNA

puts Φm + Φn into the set ASFOi=ωk
. Next, disjunctions of three conditions from

MSCOi=ωk
with no parts already contained in ASFOi=ωk

are tested, then disjunctions

of four conditions, etc., until either all logically possible disjunctions of the elements

of MSCOi=ωk
have been tested or maxstep is reached. Every non-empty ASFOi=ωk

is

passed on to the fourth stage.

Stage 4 CNA attempts to build a set CSFO of complex solution formulas (complex causal

models) encompassing all elements of O. To this end, CNA constructs all logically

possible conjunctions of exactly one element from every non-empty ASFOi=ωk
. If there

is only one non-empty set ASFOi=ωk
, that is, if only one potential outcome can be

modeled as an actual outcome, the set of complex solution formulas CSFO is identical

to ASFOi=ωk
.

To illustrate all four stages, let us now apply CNA to Table 2(c). We set cont = 0.8

and covt = 0.9 and execute the algorithm in the most general manner by not providing

an ordering. 2(c) contains data of type fs, meaning that the values in the data matrix are

interpreted as membership scores in fuzzy sets. As is customary for this data type, we use

uppercase letters for membership in a set and lowercase letters for non-membership. In

the absence of an ordering, the first stage determines the set of potential outcomes to be

O = {A,B,C,D,E}, that is, the presence of each factor in 2(c) is treated as a potential

outcome. Moreover, all other factors are potential cause factors of every element of O,

hence, CA = {B,C,D,E}, CB = {A,C,D,E}, CC = {A,B,D,E}, etc.

As the construal of minimally sufficient conditions in stage 2 and of atomic solution for-

mulas in stage 3 requires testing a multitude of conditions for cont and covt compliance, these

stages cannot be exhaustively illustrated here (for more details cf. the replication script). Fig-

ure 3 in the Appendix contains a transcript of how CNA arrives at MSCC , MSCD and MSCE

in stage 2 and at ASFC and ASFE in stage 3. Overall, stage 2 succeeds in building non-empty

sets of minimally sufficient conditions for all elements of O: MSCA = {b∗C, d∗E}, MSCB =
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{a∗C,A∗E, d∗E}, MSCC = {A,B, d∗E}, MSCD = {E, a∗C}, MSCE = {D,A∗B}. But

only the elements of MSCC and MSCE can be disjunctively combined to atomic solution for-

mulas that meet covt in stage 3: ASFC = {A+B ↔ C} and ASFE = {D+A∗B ↔ E}. For

the other three factors in O the coverage threshold of 0.9 cannot be satisfied. CNA therefore

abstains from issuing causal models for A, B and D.

Finally, stage 4 conjunctively concatenates ASFC and ASFE to the following complex

solution formula CSFO, which constitutes CNA’s final causal model for Table 2(c):

(A + B ↔ C) ∗ (D + A∗B ↔ E) con = 0.808; cov = 0.925 (7)

Two features of this algorithm deserve (re-)emphasis. First, while the computational

cores of configurational methods that build models from the top down are constituted by

procedures for redundancy elimination turning maximal into minimal sufficient and neces-

sary conditions, all conditions that CNA finds to comply with cont and covt are automati-

cally redundancy-free. That is, CNA directly identifies minimally sufficient and necessary

conditions, rendering redundancy elimination itself redundant. Second, whereas QCA di-

chotomizes fs data in a truth table before processing it, CNA processes fs data in the very

same vein as cs and mv data, viz. by building all viable conjunctions and disjunctions of po-

tential causes and systematically testing for cont and covt compliance. By directly applying

the same algorithm to all configurational data types, CNA renders the detour via truth tables

redundant.

4 Evaluation and comparison

Before a new method can be applied in real-life studies, it must, on the one hand, be shown

that the method correctly analyzes data that, by the method’s own standards, faithfully re-

flect data-generating causal structures, and, on the other, an estimate should be provided of

how the method performs under different constellations of data deficiencies. Accordingly,

this section reports the results of a series of evaluation tests that follow the template of so-

called inverse searches, which reverse the order of causal discovery in scientific practice. An

inverse search comprises three steps: (1) a causal structure ∆ is presupposed, (2) artificial

data δ is generated by letting the involved factors behave in accordance with ∆, and (3) δ

is processed by a scrutinized procedure. The procedure successfully completes the inverse

search iff its conclusions are true of ∆.
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Contrary to ordinary searches, inverse searches allow for rigorous correctness testing

because procedures cannot be immunized against unsuccessful trials. When procedures are

applied to real-life data, it is often impossible to determine whether the method has actually

recovered ∆ because ∆ is unknown; and if ∆ is known but the method fails to find it, this

failure cannot conclusively be ascribed to flaws in the method, as it might just as well be due

to deficiencies in the data. By contrast, based on the presupposed ∆ in an inverse search, it

is possible to simulate data that are free of all deficiencies of their real-life cousins. Against

such an idealized background, a failure to recover ∆ can then indubitably be blamed on

the procedure. In addition, it is possible to simulate data deficiencies in a controlled and

transparent manner, which allows for exploring to what degree a gradual deterioration in the

data quality affects the quality of the procedure’s output.

In what follows, we not only evaluate the performance of the generalized CNA algorithm,

but also compare it with QCA’s most reliable search strategy, viz. the parsimonious one

(Baumgartner and Thiem 2017b). To secure the comparability with QCA, the evaluation

focuses on CNA’s stages 1-3, which search for single-outcome structures (as does QCA) and

constitute the method’s analytical core.

For the test series, we use the R packages cna (Ambuehl and Baumgartner 2018),

which—in its newest version 2.1—implements the generalized CNA algorithm developed

here, and QCApro (Thiem 2018), which is the most dependable QCA software currently

available and additionally offers many valuable tools for method evaluation.11 The command

line interfaces of these R packages facilitate performing and replicating inverse searches—as

detailed in the appended replication script. The two packages provide all functions needed

for a wide array of trials. The most relevant among these functions are randomDGS, which

randomly draws data-generating structures ∆ from a factor frame F, allCombs, which

generates the whole space of logically possible configurations of the factors in F, some and

sample, which randomly sample a specified number of cases from a data set, makeFuzzy,

which fuzzifies the data (e.g. to simulate background noise), selectCases, which selects

the cases that comply with ∆ and randomly adds outlier cases not complying with ∆ while

ensuring that specified cont and covt thresholds remain satisfied, submodels, which gen-

11As anticipated in footnote 3, the most recent version of the QCA R package (Duşa 2007) holds a lot of
promise; in particular, because it supplies a new search algorithm, called CCubes, that also adopts the bottom-
up approach. Moreover, the package provides search parameters (e.g. for solution consistency and coverage)
that allow for closely approximating the CNA algorithm developed in this paper. All of that is new and not part
of the QCA protocol (yet). Accordingly, none of the conclusions drawn from the ensuing comparison of CNA
and QCA have any bearing on CCubes.
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erates the set of models that reflect ∆ in accordance with CC, and cna and eQMC, which

analyze the data by means of CNA and QCA, respectively.12

Against that background, inverse search trials revolve around the following steps.

1. Use randomDGS to draw a data-generating structure ∆ from a factor frame F.

2. Use allCombs to generate the space α of all logically possible configurations from

a factor frame F′ ⊇ F.

3. If the data shall be of type fs (e.g. featuring background noise), use makeFuzzy to

fuzzify α.

4. Use selectCases to select, from α, the set of cases δ complying with ∆, and to

add outlier cases not complying with ∆ as long as cont and covt remain satisfied.

5. If the data shall be fragmentary, use some or sample to randomly sample a set of

cases δ′ from δ; otherwise δ′ = δ.

6. If relevant factors shall be omitted from the data, eliminate columns from δ′; otherwise

δ′ = δ.

7. Analyze δ′ by means of cna and eQMC at consistency and coverage thresholds of cont

and covt.

8. Check whether the outputs of cna and eQMC feature a correctness-preserving model

contained in submodels(∆). The trial counts as passed iff this check is positive.

Depending on the concrete data scenario to be simulated, the particularities and the ar-

rangement of these steps must be suitably varied. More specifically, in order to simulate

model overspecification, that is, the inclusion of factors in the simulated data that are causally

irrelevant in the targeted structure ∆, F′ must be determined to be a superset of F in step

2. Correspondingly, to simulate model underspecification, that is, the omission of factors

from the data that are causally relevant in ∆, step 6 must be executed. To simulate data

fragmentation (or limited diversity), the number of cases drawn in step 5 must be smaller

than the exhaustive set of cases compatible with ∆. To simulate inconsistencies and imper-

fect solution coverages, cont and covt must be set to values below 1 in step 4. The resulting

data is of type fs if step 3 is executed, otherwise it is of type cs or mv, depending on what

types of factors are chosen for ∆. Finally, to simulate data that are ideal by the standards of

12For details on the parameters and arguments of these functions as well as their usage, the reader is referred
to the reference manuals of cna and QCApro.
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configurational causal modeling, F′ must be identical to F in step 2, cont and covt must be

set to 1 in step 4, and steps 5 and 6 must not be executed.

We perform a total of 48 different types of tests. In each test type, we randomly draw 30

to 50 data-generating structures (depending on the calculative complexity of the analysis), on

which we then perform inverse search trials using both CNA and QCA. 16 of the test types

are run on cs data, 16 on fs data, and 16 on mv data. We simulate data scenarios result-

ing from all logically possible combinations of the following four types of data deficiencies:

overspecification (O), underspecification (U), data fragmentation (F) and imperfect solution

consistencies and coverages (I). For instance, a scenario as OuFi is one with overspecifica-

tion, without underspecification, with data fragmentation, and without imperfect (i.e. with

perfect) consistencies and coverages, OUFI, in contrast, features all four types of deficien-

cies, while oufi is free of all deficiencies and, hence, results in ideal configurational data.

In order to keep the whole test series easily replicable, the complexity of the randomly

drawn data-generating structures is kept comparably simple: they feature between three and

four exogenous factors and one outcome each. To simulate overspecification, one irrelevant

factor is added to the data; and underspecification is simulated by removing one relevant

factor. Moreover, in scenarios with data fragmentation, half of the cases that are compatible

with the data-generating structure are removed in case of cs or fs data, while in case of mv

data we remove 80% of the compatible cases; that is, we simulate diversity indices of 0.5 and

0.2, respectively. Finally, in scenarios with imperfect solution consistencies and coverages,

the targeted data-generating structures are set to only reach consistencies and coverages of

0.8 in the simulated data.

The bar charts in Figure 1 contrast the correctness ratios obtained in each test type, that

is, the ratios of the number of trials complying with configurational correctness (CC) to the

total number trials in each test type. For instance, a ratio of 1 means that every trial satisfied

CC or 0.7 that 70% of the trials did. A number of aspects of our results deserve separate

emphasis. First, CNA significantly outperforms QCA in regard to correctness in a number

of data scenarios and performs equally well in all others. Second, all data scenarios where

CH is guaranteed to be satisfied, viz. the tests featuring neither underspecification nor incon-

sistencies (oufi, Oufi, ouFi, OuFi), are faultlessly analyzed by both methods.13 In mv data,

even combinations of over- and underspecification do not diminish correctness ratios. This is

strong evidence that both CNA and QCA indeed are correct methods of causal inference: if

the relevant background assumption concerning data quality, CH, is satisfied, both methods

13In regard to the evaluation of QCA, this finding confirms recent results of Baumgartner and Thiem (2017b)
and contrasts with claims made by Lucas and Szatrowski (2014).
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Figure 1: A comparison of correctness ratios of CNA and QCA for each test type. The latter
are listed on the x-axis and numbered in correspondence with the replication script.

guarantee correct results. Third, as is to be expected, neither method performs without error

in the increasingly deficient data scenarios. No method can faultlessly analyze deficient data

that do not faithfully reflect data-generating structures. But while QCA’s correctness ratios

plummet in certain cases, in particular, when over- and underspecification are combined with

imperfect consistencies and coverages, CNA maintains reasonable correctness ratios even in

those cases.

A proper interpretation of this last finding requires some differentiation. Primarily, it

must be emphasized that if CNA has a high and QCA a low correctness ratio in a particular

test that does not automatically mean that CNA issues exactly one correct model throughout

that test, while QCA keeps misfiring. Rather, it means that CNA does not commit causal
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fallacies where QCA does. But causal fallacies can be avoided in various ways. For instance,

CNA can pass a trial by abstaining from producing any models at all, while QCA issues

false models. To assess the frequency of that constellation in our test series, we additionally

calculated the ratios of trials within each test type in which CNA and QCA produce no model

at all—the results are presented in Figure 4 in the Appendix. It turns out that abstinence

from drawing a causal inference is the main reason why CNA outperforms QCA in case

of severely deficient mv data (i.e. tests 43 to 48) and one reason, among others, in case

of deficient fs data (i.e. tests 25 to 32). In those data scenarios, CNA’s reliance on both

consistency and coverage as authoritative model building criteria prompts CNA to abstain

from drawing causal inferences because consistency and coverage thresholds cannot be met.

By contrast, QCA, which does not impose coverage thresholds and gives less weight to

consistency, continues to draw inferences, committing causal fallacies more often than not.

Alternatively, in cases of data for which multiple equally fitting models exist, a difference

in CNA’s and QCA’s correctness ratios may be due to the fact that CNA more thoroughly un-

covers the space of all data-fitting models. Plainly, the more exhaustive the set of alternative

models returned by a method, the higher the chances that a correct one is contained therein;

and contrapositively, the fewer models a method returns, the lower the chances that one of

them is correct. In order to assess the impact of CNA’s and QCA’s capacities to detect model

ambiguities on their overall correctness ratios, Figure 5 (in the Appendix) provides the ratios

of trials within each test type in which CNA and QCA produce more than one model. For

both methods, the ratio of model ambiguities increases with the degree of data deficiency.

While QCA has a higher ambiguity ratio than CNA in case of deficient mv data (i.e. tests

41, 44, 47, 48), CNA more frequently than QCA issues multiple models in case of deficient

cs and fs data (i.e. tests 11 to 13, 15, 16, 29, 31, 32). However, when QCA outputs multiple

models, often none of them are correct (e.g. in tests 16, 26, 29, 44, 48), whereas when CNA

generates multiple models, at least one of them tends to be correct (cf. tests 8, 11 to 16, 23,

28 to 32). Hence, CNA not just issues more models than QCA and, for that reason, has a

higher chance of hitting the target on mere quantitative grounds; rather, the quality of its

models exceeds the quality of QCA’s models.

This is a consequence of CNA’s reliance on the bottom-up approach, which, as we have

seen in section 3, more rigorously eliminates redundant factors than QCA’s top-down ap-

proach. As a result, QCA regularly fails to eliminate irrelevant factors in data scenarios

where overspecification is combined with imperfect consistencies and coverages (and pos-
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sibly other deficiencies).14 By contrast, the combination of overspecification and imperfect

consistencies/coverages does not prevent CNA from reliably eliminating irrelevant factors.

Ultimately, this is the main reason why CNA’s correctness ratio exceeds QCA’s in case of

severely deficient cs data and a substantial reason in case of deficient fs data.

The question remains how frequently the two methods output a unique model. To answer

that, Figure 6 (Appendix) furnishes the ratios of trials within each test type in which CNA and

QCA produce exactly one model. This comparison reveals an important difference between

QCA and CNA. Exactly one model is QCA’s dominant type of output throughout all 48 tests.

For CNA, by contrast, this is only the dominant output type in the tests with mild degrees of

data deficiency (or none at all). The crucial follow-up question then becomes: what are the

ratios of trials such that one unique model is issued that moreover correctly reflects the data-

generating structure? That question is answered in Figure 7 (Appendix). Unsurprisingly,

QCA’s insistence on a unique model has negative effects on the method’s overall correctness

ratio in all data scenarios with severe deficiencies, for that unique model tends not to be

correct in those scenarios. By contrast, no such negative effects result in some data scenarios

with only mild data deficiencies. Notably, in tests 3, 8, 24, 35, and 38, QCA produces a

single model more frequently than CNA, but still reaches overall correctness ratios that are

comparable to CNA’s ratios. Hence, these are tests where QCA draws more precise causal

inferences than CNA. This difference in output precision occurs in data scenarios featuring

underspecification but no inconsistencies. Those are scenarios where solution coverages

tend to be low because relevant factors that are responsible for certain instances of analyzed

outcomes are unmeasured, meaning that these instances are not covered by resulting models.

As QCA does not impose a coverage threshold, it nonetheless produces outputs, which,

since the overall degree of data deficiency is mild, often are correct. CNA, by contrast,

imposes authoritative coverage thresholds and is hence disposed to abstain from issuing any

models in those cases. By lowering coverage cutoffs, CNA could be induced to behave

less cautiously and draw more precise causal inferences in those data scenarios as well.

Furthermore, there also exist tests—in particular, tests 10, 17, 18, 37, and 42—in which

CNA, even when high coverage standards are enforced, draws more precise inferences than

QCA by more frequently issuing one correct unique model and, thus, reaching equal and

sometimes considerably better correctness ratios than QCA.

To round off this evaluation, we not only culled correctness, ambiguity, uniqueness, and

‘no model’ ratios from the 48 test types, but also completeness ratios. The completeness ratio

14An interesting exception is test 46, where the combination of overspecification and imperfect consisten-
cies/coverages does not seem to pose a critical problem for QCA.
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Figure 2: Completeness ratios for each test type, which are listed on the x-axis and numbered
according in correspondence with the replication script.

in a test type corresponds to the ratio of the number of trials in which a method completely

uncovers the data-generating structure to the total number of trials. Completeness ratios are

presented in Figure 2. As is to be expected, CNA and QCA can only systematically uncover

all properties of data-generating structures when the data quality is very high.15 Moreover,

it is clear that in cases of underspecification neither method has a chance of ever finding

the complete structure. Apart from these confirmations of theoretical expectations, Figure

2 shows that the completeness ratios of the two methods are very close together across the

15Note, however, that only CNA reliably recovers the complete data-generating structure from ideal data
(cf. tests 1, 17, and 33). QCA fails to find the complete structure in 3 out of 50 trials with ideal fs data (test
17). As any method should always be able to infer the complete data-generating structure from ideal data, this
is a disturbing finding that calls for further investigation.
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whole test series, except for the tests 10, 20, 21, 26, 37, and 42 where CNA has a significant

edge over QCA.16 That is, CNA’s superior correctness ratios are not offset by overall lower

completeness ratios; rather, with regard to completeness, CNA likewise outperforms QCA

in a number of data scenarios and performs comparably in all other scenarios.

We end this discussion with some qualifications. The forms of data deficiencies analyzed

here do not exhaust the space of possible deficiencies. For instance, all the data we simulated

feature evenly distributed case frequencies, that is, different configurations are represented

by roughly equally many cases. Of course, that is often not the case in real-life data. It is

thus an open question how CNA and QCA fare and compare under biased case frequencies.

Also, our test series sets consistency and coverage thresholds as well as diversity indices

to constant values without exploring how the methods perform under variations of these

values. Finally, although we only tested how CNA and QCA perform under various sorts of

data deficiencies, we do not intend to suggest that data deficiencies are the only conceivable

source of causal fallacies—apart from errors in the internal protocol of a method. There

are a host of other sources for causal fallacies: for instance, errors in study designs, faulty

background theories, or misapplications of a method. Our test series bracketed all of these

problems. All findings reported above must hence be relativized to the particular sources of

causal fallacies we chose to simulate.

5 Conclusion

This paper has generalized Coincidence Analysis (CNA), a configurational comparative

method of causal data analysis, for multi-value variables and variables with continuous val-

ues from the unit interval that are interpreted as membership scores in fuzzy-sets. Moreover,

it has shown in an extended series of benchmark tests that CNA performs both correctly and

completely in ideal data scenarios and maintains reliable correctness ratios across a wide

range of data deficiencies.

CNA differs from QCA, the currently dominant CCM, in numerous respects. First, CNA

not only uncovers single-outcome structures but also structures with multiple outcomes. It

is the only CCM custom-built to uncover the Boolean complexity dimension of sequential-

ity. Second, CNA builds causal models from the bottom up rather than from the top down.

Thereby, it renders redundancy elimination (or minimization) itself redundant—which con-

16There are further tests in which the completeness ratios of the two methods come apart slightly. In tests 5,
23, 27, and 30 CNA’s completeness ratio exceeds QCA’s, whereas in tests 14, 19, and 25 QCA’s ratios exceeds
CNA’s. We take these differences to be non-significant, as they are subject to variations in the replication seeds.
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stitutes the algorithmic core of QCA. This reversal of the basic model building approach,

on the one hand, allows CNA to abstain from erroneously causally interpreting irrelevant

factors in cases of model overspecification and, on the other, permits CNA to directly apply

one and the same algorithmic protocol to all data types, without a detour via truth tables.

Third, CNA imposes authoritative consistency and coverage cutoffs on causal models (and

all their elements), whereas QCA only uses a consistency threshold in truth table generation.

In consequence, CNA is much more risk-averse than QCA when it comes to drawing causal

inferences, which, in turn, yields that CNA maintains reasonably high correctness ratios even

in scenarios featuring severe data deficiencies that cause QCA’s ratios to plummet. At the

same time, we have seen that this inferential caution does not entail that CNA would fail to

completely uncover data-generating structures where QCA succeeds in doing so.

Overall, the generalized version of CNA not only reliably uncovers all Boolean dimen-

sions of causal structures from crisp-set, multi-value, and fuzzy-set data, but also has effec-

tive inbuilt controls that abandon an analysis that is too risky due to data deficiencies. In

that light, CNA constitutes a powerful methodological alternative for researchers interested

in the Boolean dimensions of causality.
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Appendix

Transcript of CNA, stages 2 and 3

OUTCOME: C
-------------------
msc, step 1
      con  min.suff
A   0.915       YES
a   0.571         .
B   0.864       YES
b   0.632         .
D   0.734         .
d   0.772         .
E   0.797         .
e   0.637         .
-------------------
msc, step 2
        con  min.suff
a*b   0.520         .
a*d   0.740         .
a*D   0.676         .
a*e   0.609         .
a*E   0.706         .
b*d   0.740         .
b*D   0.705         .
b*e   0.673         .
b*E   0.726         .
d*e   0.747         .
d*E   1.000       YES
D*E   0.783         .
---------------------
msc, step 3 
          con  min.suff
a*b*d   0.649         .
a*b*D   0.631         .
a*b*e   0.604         .
a*b*E   0.646         .
a*d*e   0.724         .
a*D*E   0.689         .
b*d*e   0.740         .
b*D*E   0.705         .
------------------------
msc, step 4 
           con  min.suff
a*b*d*e  0.649        .
a*b*D*E  0.614        .
========================
asf, step 1
         cov  min.nec
A      0.691        .
B      0.699        .
d*E    0.309        .
------------------------
asf, step 2 
             cov min.nec
A + B      0.925     YES
A + d*E    0.703       .
B + d*E    0.714       .
------------------------
asf, end

OUTCOME: D 
--------------------
msc, step 1
      con  min.suff
A   0.612         .
a   0.686         .
B   0.667         .
b   0.620         .
C   0.651         .
c   0.732         .
E   0.836       YES
e   0.422         .
----------------------
msc, step 2 
        con  min.suff
a*b   0.738         .
A*b   0.656         .
a*B   0.770         .
A*B   0.707         .
a*c   0.777         .
A*C   0.649         .
a*C   0.811       YES
a*e   0.547         .
A*e   0.525         .
b*c   0.683         .
b*C   0.691         .
B*C   0.691         .
b*e   0.493         .
B*e   0.662         .
c*e   0.637         .
C*e   0.553         .
-----------------------
msc, step 3 
          con  min.suff
a*b*c   0.736         .
A*b*C   0.657         .
A*B*C   0.701         .
a*b*e   0.660         .
A*b*e   0.560         .
a*B*e   0.705         .
a*c*e   0.692         .
A*C*e   0.554         .
b*c*e   0.613         .
b*C*e   0.596         .
B*C*e   0.672         .
-----------------------
msc, step 4 
           con  min.suff
a*b*c*e  0.670         .
A*b*C*e  0.556         .
========================
asf, intial
           cov
E + a*C  0.893
No asf's!

OUTCOME: E 
-------------------
msc, step 1 
      con  min.suff
A   0.734         .
a   0.617         .
B   0.764         .
b   0.571         .
C   0.685         .
c   0.560         .
D   0.809       YES
d   0.401         .
---------------------
msc, step 2 
        con  min.suff
a*b   0.659         .
A*b   0.684         .
a*B   0.763         .
A*B   0.934       YES
a*c   0.596         .
A*C   0.787         .
a*C   0.763         .
a*d   0.485         .
A*d   0.609         .
b*c   0.574         .
b*C   0.656         .
B*C   0.777         .
b*d   0.372         .
B*d   0.657         .
c*d   0.446         .
C*d   0.519         .
---------------------
msc, step 3
          con  min.suff
a*b*c   0.607         .
A*b*C   0.695         .
a*B*C   0.766         .
a*b*d   0.494         .
A*b*d   0.539         .
a*B*d   0.660         .
a*c*d   0.467         .
A*C*d   0.668         .
a*C*d   0.655         .
b*c*d   0.427         .
b*C*d   0.503         .
B*C*d   0.660         .
-----------------------
msc, step 4
            con  min.suff
a*b*c*d   0.448         .
A*b*C*d   0.559         .
a*B*C*d   0.665         .
=========================
asf, step 1
        cov  min.nec
D     0.837        .
A*B   0.517        .
-----------------------
asf, step 2 
           cov  min.nec
D + A*B  0.966      YES
-----------------------
asf, end 

Figure 3: Transcripts of how CNA finds MSC and ASF for outcomes C, D, and E in Table
2(c). cont = 0.8 and covt = 0.9. “YES” indicates that a condition meets cont and covt,
respectively. The parts above the double lines report the search for MSC, the parts below the
search for ASF.
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Additional test scores
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Figure 4: Ratios of trials in each test type in which no model is produced. The tests are
numbered in correspondence with the replication script.
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Ratios of multiple models being produced

0.00
0.25
0.50
0.75
1.00

ou
fi (1

)

Oufi
(2

)

oU
fi (3

)

ou
Fi (4

)

ou
fI (

5)

OUfi (6
)

OuF
i (7

)

oU
Fi (8

)

ou
FI (

9)

OufI
(1

0)

oU
fI (

11
)

OUFi (1
2)

OUfI (
13

)

OuF
I (

14
)

oU
FI (

15
)

OUFI (
16

)

csCNA
csQCA

Crisp-set data

0.00
0.25
0.50
0.75
1.00

ou
fi (1

7)

Oufi
(1

8)

oU
fi (1

9)

ou
Fi (2

0)

ou
fI (

21
)

OUfi (2
2)

OuF
i (2

3)

oU
Fi (2

4)

ou
FI (

25
)

OufI
(2

6)

oU
fI (

27
)

OUFi (2
8)

OUfI (
29

)

OuF
I (

30
)

oU
FI (

31
)

OUFI (
32

)

fsCNA
fsQCA

Fuzzy-set data

0.00
0.25
0.50
0.75
1.00

ou
fi (3

3)

Oufi
(3

4)

oU
fi (3

5)

ou
Fi (3

6)

ou
fI (

37
)

OUfi (3
8)

OuF
i (3

9)

oU
Fi (4

0)

ou
FI (

41
)

OufI
(4

2)

oU
fI (

43
)

OUFi (4
4)

OUfI (
45

)

OuF
I (

46
)

oU
FI (

47
)

OUFI (
48

)

mvCNA
mvQCA

Multi-value data

Figure 5: Ratios of trials in each test type in which more than one model is produced. The
tests are numbered in correspondence with the replication script.
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Ratios of unique models being produced
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Figure 6: Ratios of trials in each test type in which one unique model is produced. The tests
are numbered in correspondence with the replication script.
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Ratios of correctness satisfaction by a unique model
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Figure 7: Ratios of trials in each test type in which correctness is satisfied by a unique
model, i.e. such that exactly one model is issued which is correct. The tests are numbered in
correspondence with the replication script.
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