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Abstract.
While standard procedures of causal reasoning as procedures analyzing causal Bayesian

networks are custom-built for (non-deterministic) probabilistic structures, this paper intro-
duces a Boolean procedure that uncovers deterministic causal structures. Contrary to existing
Boolean methodologies, the procedure advanced here successfully analyzes structures of arbi-
trary complexity. It roughly involves three parts: first, deterministic dependencies are identified
in the data; second, these dependencies are suitably minimalized in order to eliminate redun-
dancies; and third, one or – in case of ambiguities – more thanone causal structure is assigned
to the minimalized deterministic dependencies.
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1. Introduction

Since the early nineties, the philosophical literature on causal reasoning
has been dominated by inference procedures developed within a theoretical
framework according to which causal structures can be analyzed in terms of
Bayesian networks.1 One of the key studies that has influenced and structured
that whole research program, undoubtedly, is Spirtes’, Glymour’s and
Scheines’ book onCausation, Prediction, and Search(2000). That study has
inspired and provoked a host of literature that has in the mean time profoundly
deepened our understanding of how, under what conditions, and to what
extent causal structures can be inferred from pertaining empirical data. As is
well known, all the different causal discovery algorithms developed in that
framework impose two important constraints on the causal structures and the
data generated by these structures: The structures and the data must satisfy
thecausal Markov assumptionand thefaithfulness assumption.2

Many causal structures undoubtedly satisfy these assumptions, but cer-
tain common structures do not. One important type of causal structure that

1 With respect to the notion of a Bayesian network cf. e.g. (Pearl, 1985).
2 The causal Markov assumption states that in a probability distributionP generated by a

(acyclic) causal structureS a variableZ is independent of all its non-effects inS conditional
on all of Z’s direct causes, provided that no direct common causes of any two variables in
S are left out ofP . According to the faithfulness assumption, there are no other conditional
independence relations inP than the ones implied by the causal Markov assumption (cf. e.g.
(Spirtes et al., 2000), pp. 29-31, (Glymour, 1997), (Glymour, 2007)).
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2 Michael Baumgartner

does not conform to both of these assumptions is constitutedby deterministic
structures that are investigated on a sufficiently fine-grained level such that
deterministic dependencies actually show up in the data. Ina deterministic
structure every value of at least one exogenous variable uniquely determines
the values of at least one endogenous variable.3 Such deterministic dependen-
cies may, of course, not show up in corresponding data, if, for instance, not
all variables involved in the structure are contained in theset of investigated
variables or if not all relevant factors are controlled for in a pertaining study.
However, if deterministic structures are investigated against a causally homo-
geneous background – say, in a laboratory context – or if onlyfew instances
of a causal structure are available – as in small-N studies in social sciences4 –
to the effect that deterministic dependencies are actuallyexhibited in the data,
the faithfulness assumption is violated and, accordingly,standard procedures
for the discovery of causal Bayesian networks are not applicable or generate
inadequate outputs, respectively.5

This paper introduces a procedure of causal reasoning that is custom-built
for deterministic structures and deterministic data. As the procedure analyzes
so-calledcoincidencedata, which is going to be properly characterized in
subsequent sections, it shall be labeledcoincidence analysis, or CNA for
short.6 While procedures uncovering causal Bayes nets explicitly or implic-
itly presuppose a probabilistic notion of causation,CNA draws on an account
of causation that is inspired by the regularity theoretic tradition going back to
Mackie’s (1974) theory of INUS-conditions. Instead of Bayesian networks,
CNA implements Boolean techniques, predecessors of which can be found in
Quine (1952, 1959), Ragin (1987, 2000) and May (1996, 1999).In a nutshell,
the procedure consists of three parts: In a first step deterministic dependencies
of sufficiency and necessity are identified in the data; a second step suitably
minimalizes these dependencies in order to eliminate redundancies; and in
a third step the minimalized dependencies are causally interpreted. Before
CNA is properly introduced and illustrated in sections 3 to 9, section 2 is
going to briefly review its conceptual background.

3 For details cf. (Glymour, 2007), p. 236.
4 Cf. e.g. (Ragin, 1987).
5 Such as to illustrate violations of faithfulness by deterministic structures assume that a

factorB is a common cause ofA andC, i.e.A ←− B −→ C, and thatB is sufficient and
necessary forC. In that case,B andA are independent conditional onC, i.e.p(A|B ∧ C) =
p(A|C), which is not implied by the causal Markov assumption (cf. e.g. (Spirtes et al., 2000),
pp. 53-57, (Glymour, 2007)).

6 Coincidence analysis is not abbreviated by “CA” because, inthe social science literature,
this acronym is often used forcorrespondence analysiswhich must not be confused with
coincidence analysis.
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Uncovering Deterministic Causal Structures 3

2. Conceptual Background

As mentioned above, the conceptual background of the inference procedure
to be developed in this paper is located in the regularity theoretic tradition
of the philosophy of causation. According to one of the core tenets of reg-
ularity theories, causation is deterministic. The question as to whether all
causal processes indeed are ultimately deterministic or not can be bypassed
here. It seems hardly questionable that there are at least some deterministic
processes – especially at a macro level. Thus, whoever holdsthat there ad-
ditionally exist irreducibly indeterministic causal processes, e.g. at a micro
level, can simply view regularity theories as being concerned with the de-
terministic structures at a macro level only. However, as iswell known, the
adequacy of regularity theoretic analyses of deterministic causal structures
has been broadly criticized during the past 30 years. While Ihave argued else-
where (cf. (Baumgartner, 2008a)) that that criticism has commonly targeted
oversimplified regularity theoretic sketches, this is not the place to defend
a sufficiently sophisticated regularity theory of causation. The prospects and
merits ofCNA, in the end, do not hinge on whether deterministic causal struc-
tures can successfully be reduced to regularities subsisting in nature or not.
All that matters for my current purposes is that when it comesto deterministic
structures regularities undoubtedly constitute an important sort of empirical
information on which inferences to underlying structures can be based.

CNA is designed to unfold deterministic causal structures on type level,
i.e. it analyzes general causation. The relata of general causation can be seen
to be event types orfactors for short. A factor that causes another factor is
said to becausally relevantto the latter. Factors are taken to be similarity
sets of event tokens. They are sets of type identical token events, of events
that share at least one feature. Whenever a member of a similarity set that
corresponds to an event type occurs, the latter is said to beinstantiated. Fac-
tors are symbolized by italicized capital lettersA, B, C, etc., with variables
Z, Z1, Z2 etc. running over the domain of factors. They are negatable.The
negation of a factorA is written thus:A. A is simply defined as the comple-
mentary set ofA. Alternatively, factors can be seen as binary variables that
take the value 1 whenever an event of the corresponding type occurs and the
value 0 whenever no such event occurs. That meansCNA is custom-built for
deterministic structures featuring binary variables. Therestriction to binary
variables primarily serves conceptual simplicity. It allows for a straightfor-
ward implementation of Boolean optimization techniques, which shall turn
out to be of great relevance to the uncovering of deterministic structures.
Nonetheless, the restriction to binary variables implies that structures involv-
ing multi-valued variables must be encoded in binary terms before they can be
treated byCNA. For quite some time, however, there have been considerable
efforts in the literature on logic synthesis to generalize Boolean optimization
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procedures as Quine-McCluskey optimization for systems involving multi-
valued variables (cf. e.g. (Mirsalehi and Gaylord, 1986) or(Sasao, 1999), ch.
10). Even though – as we shall see in section 9 –CNA significantly differs
from the Quine-McCluskey algorithm, there seem to be no principled obsta-
cles to generalizingCNA for multi-valued variables as well. That, however,
is not going to be attempted in the present context. For reasons of simplicity,
CNA shall here be tailored to the case of causal structures involving binary
variables, i.e. factors, only.

Causal analyses are always relativized to a set of investigated factors. This
set is referred to as thefactor frameof the analysis. Factors are virtually
never causally relevant to their effects in isolation. Rather, they are parts of
whole causing complexes –complex causes. A complex cause only becomes
causally effective if all of its constituents are co-instantiated, i.e. instantiated
close-by orcoincidently. Coincidently instantiated factors are termedcoinci-
dences. As will be shown below, coincidences constitute the empirical data
processed byCNA.

Essentially, modern regularity theories analyze causal relevance with re-
course to minimalized regularities among factors. The crucial notion needed
in the definiens of causal relevance is the notion of aminimal theory.7 Briefly,
a minimal theory of a factorB is aminimally necessarydisjunction ofmin-
imally sufficientconditions ofB. A conjunction of coincidently instantiated
factorsA1∧A2∧. . .∧An, which for simplicity shall be abbreviated by a mere
concatenation of the respective factors, is a minimally sufficient condition of
a factorB iff A1A2 . . . An is sufficient forB, i.e. A1A2 . . . An → B, and
there is no proper partα of A1A2 . . . An such thatα → B. A “proper part”
of a conjunction designates the result of any reduction of this conjunction
by one conjunct.8 Analogously, a disjunction of factorsA1 ∨ A2 ∨ . . . ∨ An

is a minimally necessary condition of a factorB iff A1 ∨ A2 ∨ . . . ∨ An is
necessary forB, i.e. B → A1 ∨ A2 ∨ . . . ∨ An, and there is no proper part
β of A1 ∨ A2 ∨ . . . ∨ An such thatB → β. A “proper part” of a disjunction
designates the result of any reduction of this disjunction by one disjunct.

That a disjunction of minimally sufficient conditions of a factorB is mini-
mally necessary forB shall be symbolized by ‘⇒’ which is termed adouble-
conditional. Thus, a minimal theory has the following double-conditional

7 Cf. e.g. (Graßhoff and May, 2001), (Baumgartner and Graßhoff, 2004) or (Baumgartner,
2008a).

8 Defining a minimally sufficient condition in terms of proper parts and not – as might be
expected – in terms ofproper subsetsthat correspond to reductions of sufficient conditions
by one or more conjuncts allows for a simpler procedure to identify minimally sufficient
conditions. For if a sufficient condition has no sufficient proper parts, it does not have sufficient
proper subsets either. Hence, in order to show that a sufficient conditionA1A2 . . . An is mini-
mally sufficient it suffices to establish thatA1A2 . . . An has no proper parts – establishing that
it has no sufficient proper subsets is unnecessary. For analogous reasons minimally necessary
conditions are definied in terms of proper parts and not proper subsets above.

det_kluw2.tex; 18/05/2008; 14:04; p.4



Uncovering Deterministic Causal Structures 5

form:
AC ∨ DE ∨ FGH ⇒ B (1)

Informally, (1) says that wheneverAC or DE or FGH are instantiated,B
is instantiated as well, and that wheneverB is instantiatedAC or DE or
FGH is instantiated as well, and that sufficient and necessary conditions
contained in (1) are minimal. In this vein, both the principle of determinism
and the principle of causality are formally captured in a straightforward way:
Causes determine their effects, and if no causes are present, the effect is not
present either. Membership in a minimal theory induces positive directcausal
relevance: A factorA is (positively) directly causally relevant to a factor
B iff A is part of a minimal theory ofB.9 Hence, (1) represents a causal
structure such thatAC, DE andFGH are alternative complex causes ofB.
Correspondingly, a factorA has negative direct causal relevance for a factor
B iff A is contained in a minimal theory ofB.

Analyzing the disjunction of alternative deterministic causes ofB as a
necessary condition ofB amounts to claiming sufficiency ofB for just that
disjunction. As is often done by critics of regularity accounts, the question
might thus be raised as to how the above account of causal relevance captures
the undisputed non-symmetry of that relation.10 For if B can be shown to be
minimally sufficient forAC∨DE∨FGH, it might be argued that – relative to
the above analysis –B is likewise to be considered causally relevant to its al-
ternative causes. Contrary to first appearances, however, double-conditionals
as (1) are not symmetrical with respect to the expressions tothe left and the
right of “⇒”. The instantiation of a particular disjunct is minimally sufficient
for B, but not vice versa.B does not determine a particular disjunct to be
instantiated.11 B only determines the whole disjunction of minimally suffi-
cient conditions.AC andDE andFGH are each minimally sufficient forB,
the latter however is only minimally sufficient forAC ∨ DE ∨ FGH. This
non-symmetry corresponds to the direction of determination.

9 In fact, in order for a minimal theoryΦ to be causally interpretable, certain relational
constraints, as spatiotemporal proximity, have to be imposed on the events that instantiate
the factors inΦ. For simplicity, these constraints are neglected in the present context. For
a detailed presentation of the logical form of minimal theories cf. (Baumgartner, 2008a).
Furthermore, as shall become apparent in section 7 below, minimalizing necessary conditions
paves the way for an accurate regularity theoretic treatment of common cause structures, which
– on account of Mackie’s (1974) famous Manchester Factory Hooters counterexample – have
often been considered intractable by regularity theories.

10 For details on the notion of non-symmetry cf. e.g. (Lemmon, 1965), p. 180. The relation
of general causation, which is of interest in the present context, is non-symmetric and not
asymmetricas is often claimed in the literature. Generic causal dependencies may be cyclically
structured.

11 Cf. (Graßhoff and May, 2001), pp. 97-99, and (Baumgartner, 2008a). Similar analyses
of the direction of causation have been proposed in (Sanford, 1976), (Ehring, 1982), and
(Hausman, 1998).
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6 Michael Baumgartner

Accounting for the non-symmetry of causal relevance in thisvein has an
important implication as regards the minimal complexity ofdeterministic
structures. A conditionAC that is both minimally sufficient and necessary
for a factorB cannot be identified as the cause ofB, for, in that case,B is
minimally sufficient and necessary forAC as well. All empirical evidence
such mutual dependencies generate are perfectly correlated instantiations of
AC andB – both are either co-instantiated or absent. Such data can either
stem from a structure such thatAC is a cause ofB or vice versa orAC

andB are parallel effects of an uncontrolled hidden cause. If no additional
empirical information such as temporal orderings of the instances ofAC and
B is available, neitherAC nor B can be identified as cause or effect. As is
well known, similar ambiguities arise in case of probabilistic data analyzed by
procedures uncovering causal Bayes nets (cf. (Spirtes et al., 2000)). Causes
and effects can only be kept apart based on regularity or correlation data
alone if the data is diverse enough such that at leasttwo alternative causes
of each effect are contained in the corresponding factor frame. Section 9 will
be concerned in detail with ambiguities that arise when it comes to causally
analyzing data featuring deterministic dependencies.

Ordinary causal structures far exceed (1) in complexity. Most causally
relevant factors are of no interest to causal investigations or are unknown.
That is why minimal theories either need to be relativized toa specific causal
background or must be kept open for later extensions. The latter is achieved
by means of variables. VariablesX1,X2, . . . are introduced to stand for an
open (finite) number of additional conjuncts within a sufficient condition,
while YA, YB , . . . are taken to stand for an open number of additional dis-
juncts in a minimal theory. If (1) is in this sense kept open for additional
factors, one gets:

ACX1 ∨ DEX2 ∨ FGHX3 ∨ YB ⇒ B (2)

While direct causal relevance is analyzed with recourse to membership
in simpleminimal theories as (1) or (2), complex causal structures ascausal
chains or common cause structures are represented bycomplexminimal the-
ories. Simple minimal theories can be conjunctively concatenated to complex
theories: A conjunction of two minimal theoriesΦ andΨ is a complex min-
imal theory iff, first, at least one factor inΦ is part ofΨ and, second,Φ and
Ψ do not have an identical consequent. The first constraint guarantees that
complex theories represent cohering causal structures andthe second restric-
tion prohibits the conjunctive concatenation of equivalent minimal theories
and thus excludes redundancies. The following are two examples of complex
minimal theories:

(AX1 ∨ DX2 ∨ YB ⇒ B) ∧ (BX3 ∨ GX4 ∨ YH ⇒ H) (3)

(AX1 ∨ DX2 ∨ YB ⇒ B) ∧ (DX3 ∨ GX4 ∨ YH ⇒ H) (4)
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Uncovering Deterministic Causal Structures 7

(3) represents a causal chain –B is the effect factor of the first conjunct and
a cause factor in the second conjunct –, (4) stands for a common cause struc-
ture –D is a common cause ofB andH. In this vein, deterministic causal
structures of arbitrary complexity can be represented on regularity theoretic
grounds. Accordingly, a factorA can be said to beindirectlycausally relevant
to a factorB iff there is a sequence of factorsZ1, Z2, . . . ,Zn, n ≥ 3, such
thatA = Z1, B = Zn, and for eachi, 1 ≤ i < n: Zi is part of the antecedent
of a simple minimal theory ofZi+1.

3. The Basic Idea and Input Data

Minimal theories represent deterministic causal structures in a transparent
way. Conjunctions in the antecedent of a minimal theory stand for complex
causes of the factor in the consequent, disjunctions for alternative causes.
Hence, minimal theories are directly causally interpretable. Moreover, min-
imal theories impose constraints on the behavior of the factors contained in
them. For instance, (1) says that wheneverAC is instantiated, there also is
an instance ofB. That means, according to (1), the coincidenceACB does
not occur. Consequently, information about occurring and non-occurring co-
incidences allows for conclusions as to the minimal theory representing the
underlying causal structure. If it is discovered, say, in a given experimental
setup, thatAC is never realized in combination withB, while bothACB and
ACB are found to be empirically realized, it follows thatAC is minimally
sufficient for B relative to the causal background of the pertaining setup.
In this sense, minimal theories constitute the link betweenthe empirical be-
havior of the factors in an investigated frame and the deterministic structure
behind that behavior. The empirical behavior of the factorsallows for infer-
ring minimal theories that describe that behavior, and these theories, in turn,
are causally interpretable.

The procedure of causal reasoning to be developed here operates on pure
coincidence data with respect to the factors involved in a causal process
whose structure is to be revealed – hence the labelcoincidence analysis.
Based on its input data,CNA determines for each factorZi in the analyzed
frame involving, say,n factors which deterministic dependencies hold be-
tweenZi and the othern − 1 factors in the frame. Most of these depen-
dencies will turn out not to be causally interpretable. The possibly causally
interpretable dependencies are subsequently minimalizedand expressed in
terms of minimal theories, which, finally, are straightforwardly causally in-
terpretable as shown above.

The data processed byCNA is listed analogously to truth tables. Tables
as in table I are referred to ascoincidence lists. The rows in a coincidence
list shall be numbered starting with the first row below the title row. The row
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8 Michael Baumgartner

Table I. Simple examples of coincidence lists as processed by CNA.

A B C

1 1 1
1 0 1
0 1 1
0 0 0

A B C

1 1 1
1 1 0
0 1 1
1 0 1
1 0 0
0 1 0
0 0 1
0 0 0

A B C

1 1 1
0 1 1
1 0 1
1 0 0
0 1 0
0 0 1
0 0 0

A B C

1 1 1
0 0 0

(a) (b) (c) (d)

constituted by “1 1 1” in list (a) is row 1 (R1), the row featuring “1 0 1” is
row 2 (R2), and so on. In coincidence lists a ‘1’ in the column of, say, factorA
represents an instance ofA, a ‘0’ in that same column symbolizes the absence
of such an instance. Columns of coincidence lists thus record instances and
absences of the factor mentioned in the title row, while the rows following
the title row specify coincidences of the factors in the title row. For example,
the first row, R1, of (a) records the coincidenceABC, the following row, R2,
indicates the coincidenceABC.

List (a) in table I clearly exhibits dependencies among its factors. For
instance, there is no row in (a) featuringABC. That means the coincidence
AB is sufficient forC. Likewise, there is no row in (a) featuringA in com-
bination withC, which amounts to the sufficiency ofA for C. The sufficient
conditionAB, hence, contains a sufficient proper part,A, and, accordingly,
is not minimally sufficient. FactorA, on the other hand, does not have any
sufficient proper parts and, thus, is minimally sufficient for C. Analogously
it can be shown thatBC is minimally sufficient forA in list (a). As will be
shown below, some of these dependencies are causally interpretable, others
are not.

In contrast, list (b) contains all 8 logically possible configurations of the 3
factors in its frame. (b) is therefore referred to as acompletecoincidence list.
Complete lists do not feature dependencies among their factors. Accordingly,
complete lists do not need to be analyzed for dependencies tobegin with. De-
pendencies only emerge in incomplete lists, i.e. in lists that feature less than
2n coincidences of then factors in their frame. Upon investigating processes
with hard to control causal backgrounds, however, all logically possible factor
combinations are no rare empirical result in scientific practice. In such cases,
it is often possible to exclude certain configurations as “don’t care” cases
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Uncovering Deterministic Causal Structures 9

based on prior causal knowledge.12 Alternatively, significance levels may
be introduced that exclude rarely found configurations fromconsideration.13

Thus, there are several methodologies available that reduce complete coinci-
dence lists such as to render them interpretable in terms of being the result of
deterministic causal structures.

List (c) in table I is not complete in this sense. There is no row in that
list such thatA and B are instantiated without an instance ofC. AB is
minimally sufficient forC relative to list (c). Finally, list (d) is incomplete as
well. It is incomplete to such an extent that too many dependencies emerge.
According to list (d), every factor is minimally sufficient and necessary for
every other factor in the corresponding frame. Given such anabundance of
dependencies causes and effects cannot be distinguished. As the previous
section has shown, if causal dependencies are to be orientedon the basis
of mere coincidence data, the analyzed factor frame must include at least
two alternative causes for each effect. As in case of complete lists, prior
knowledge may provide a means to causally analyze data featuring this kind
of insufficient diversity. It is possible that, based on suchknowledge, lists as
(d) can be supplemented by additional rows representing coincidences that,
notwithstanding the fact that they have not been observed ina given study, are
known to be empirically possible. As such data adjustment, however, is not
part of mechanically uncovering deterministic structuresbut a precondition
thereof, it shall not be further discussed here.

4. Empirical Exhaustiveness and Homogeneity

Apart from the requirement as to the minimal diversity of analyzed coin-
cidence lists,CNA imposes two important constraints on its input data: (I)
unambiguous causal inferences are only possible given thatthe coincidence
data is exhaustive and (II) the causal background of coincidence lists must be
homogeneous. Let us take these constraints in turn.

Any procedure of causal reasoning, in some way or another, assumes
that its input data is exhaustive. Probabilistic procedures presume the avail-
ability of probability distributions over all variables inthe model space, or
Ragin’s (1987, 2000)QCA-algorithm relies on the realizability of all2m

configurations ofm cause variables. Nonetheless, assumptions as regards the
exhaustiveness of empirical data are hardly ever made explicit in studies on
causal reasoning.14 Such an implicit taking for granted of the suitability of in-
put data, however, will not do for the present context. As theprevious section

12 Cf. (Ragin, 1987), pp. 113-118.
13 Cf. (Ragin, 2000), pp. 109-115.
14 One exception is Ragin (1987, 2000). He discusses at length how limited empirical data

negatively affects causal reasoning.
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has shown, deterministic dependencies amongn factors emerge only if not
all 2n coincidences are contained in an analyzed list. Of course, coincidences
may not only be missing from coincidence lists due to causal dependencies
among respective factors. Exhaustive data collection may fail for a host of
different reasons. Financial or technical resources may happen to be limited
in experimental sciences or nature may be found not to provide sufficient
data in non-experimental disciplines. Inexhaustive data is likely to be one of
the main reasons for hampered causal interpretability of that data. Minimal
theories are only unambiguously assignable to coincidencelists provided that
the latter are assumed to be empirically exhaustive in the following sense:

Principle of Empirical Exhaustiveness (PEX): The collection of empirical
data to be processed byCNA faces no practical limitations whatso-
ever. All coincidences of the analyzed factors that are compatible with
the causal structure regulating the behavior of these factors are in fact
observed.

(PEX) guarantees that whenever a coincidence is missing from aCNA-
processed list, this is due to underlying causal dependencies. Clearly, (PEX)
constitutes a sweeping idealization with respect to data collection. Such an
idealization, however, may prove to be useful in many practical contexts. It
can be implemented as a gauge by means of which concrete data collections
can be measured and thus evaluated. For clearly, if there is reason to believe
that a particular study did not collect all the relevant dataabout an investigated
structure and if there is no other source available that supplements missing
data, the pertaining structure simply cannot be fully uncovered. Accordingly,
while (PEX) is a necessary condition for drawingunambiguousinferences, it
is not a necessary condition for drawing (ambiguous) causalinferences from
coincidence lists. If inexhaustive lists are processed byCNA, as will be shown
in section 10 below, more than one minimal theory will be assigned to such
lists. The number of minimal theories assigned to an inexhaustive list depends
on the logical possibilities of complementing a respectiveinexhaustive list in
a causally interpretable manner. Thus, while it is impossible to infer a single
causal structure from an inexhaustive coincidence list, a set of structures can
be inferred such that all of its members are compatible with the coincidences
recorded in the inexhaustive list. Assigning sets of causalstructures to inex-
haustive lists, of course, also is a form of causal inference. Such inferences
might prove to be of great practical use, for they at least shed light on what
structurescannotunderly an investigated factor frame. Therefore,CNA does
not necessarily have to be based on (PEX). Nonetheless, as failures of (PEX)
are a problem of proper data collection and as the latter is not part of causal
reasoning per se, but a precondition thereof, (PEX) shall be endorsed in sec-
tions 5 to 9 which are concerned with matters of causal reasoning only. A
detailed discussion of violations of (PEX) is postponed until section 10.
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Uncovering Deterministic Causal Structures 11

While violations of (PEX) induce ambiguities in the output ofCNA, yet
do not give rise to fallacious causal inferences, causal fallacies may result
if the causal background of an analyzed coincidence list is not causally ho-
mogeneous. A list as (a) in table I could be generated by suitable separate
manipulation of each factor. A causal interpretation of such an ‘artificial’ list,
of course, would be fallacious. Causal relevancies would beattributed to fac-
tors in the frame which, in fact, did not contribute to the behavior of respective
effect factors. Such as to forestall causal fallacies, it must be presumed that
the behavior of the factors in the investigated frame is notconfoundedby
causally relevant factors not contained in the frame. Each analysis of a causal
structure is limited to a small subset of all factors involved in that structure.
Causal structures are extremely complex. Ordinarily, onlya few factors are
of interest in the course of concrete studies. While it is notnecessary to
assume that aCNA-analyzed coincidence list contains all causally relevant
factors involved in an investigated structure, it must be presupposed that
a CNA-analyzed coincidence list over a frame consisting ofZ1, . . . , Zn is
generated against a causal background that is homogeneous with respect to
confoundersnot contained in{Z1, . . . , Zn}. In order to spell out the notion of
a confounder needed for our purposes, the notion of a causal path is required:
A sequence of factors〈Z1, . . . , Zk〉, k ≥ 2, constitutes acausal pathfrom
Z1 to Zk iff for eachZi andZi+1, 1 ≤ i < k, in the sequence:Zi is directly
causally relevant toZi+1. A conditionXj is said to be part of a causal path,
if at least one conjunct ofXj is contained in the sequence constituting that
path. Now the notion of a confounder can be clarified: IfZn is an effect, a
confounder ofZn is a minimally sufficient conditionXj of Zn such thatXj

is causally relevant toZn andXj is part of a causal path leading toZn not
containing any of the factorsZ1, . . . , Zn−1. That means a factorZo that is
causally relevant to an effectZn and that is not contained in the investigated
frame {Z1, . . . , Zn} cannot confound causal reasoning if all causal paths
connectingZo andZn contain at least one factor in{Z1, . . . , Zn}, i.e. if Zo

is a cause or an effect of a factor in the investigated frame. Aconfounder is
a factor or a conjunction of factors by means of which the investigated effect
can be manipulated independently of the factors in the frame.

The notion of a confounder is to be understood relative to a corresponding
effect. Basically, any factor in an analyzed frame can be seen as an effect of
an underlying causal structure. However, as will be shown below, there are
several constraints subject to which a factor can be excluded from the setW
of potential effects contained within a given factor frame prior to causally
analyzing that frame. Still, depending on the specificZi ∈ W analyzed in
the course of a particular run ofCNA, different factors are to be seen as
confounders and, accordingly, must be homogenized. Generally: Input data
processed byCNA is assumed to be generated against causally homogeneous
backgrounds in the sense of (HC):
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12 Michael Baumgartner

Table II. Two coincidence lists that cannot be causally analyzed, for none of the involved
factors can be interpreted as an effect of an underlying causal structure in accordance with
(HC).

A B C

1 1 1
1 0 1
0 1 1
1 1 0

A B C

1 0 0
0 1 0
0 0 1
0 0 0

(a) (b)

Homogeneity (HC): The background of a causally analyzed list ofm coin-
cidences over a factor frame containing the setW of potential effects is
causally homogeneous iff for every confounderXj of every factor inW:
Xj is absent in the background of one coincidence iffXj is absent in the
backgrounds of all otherm − 1 coincidences.

While only homogeneous coincidence lists are causally analyzable, (HC)
does not guarantee the causal analyzability of coincidencelists. Rather, (HC)
prevents causal fallacies. Therefore, a coincidence list may well be homoge-
neous in terms of (HC), even though confounders are instantiated in its back-
ground – as long as these confounders are instantiated in thebackgrounds of
all coincidences. If confounders are universally instantiated, effects will be
present in all coincidences, irrespective of whether the other factors in the
frame are present or absent. In this case no dependencies emerge and thus no
inferences as to underlying causal structures are drawn. Asa consequence, no
causal fallacies are committed either.

(HC) excludes a number of coincidence lists from causal analyzability.
The lists fed intoCNA may well reveal certain backgrounds to be causally
inhomogeneous. Consider, for instance, the lists in table II. AssumeB to be
an effect of the causal structure generating list (a) in table II. A comparison of
the coincidences recorded in rows 1 (R1) and 2 (R2) shows that, if B in fact
were the effect of the underlying structure, list (a) would violate (HC). The
only factor varying in R1 and R2 isB; no other factor in the frame{A,B,C}
is accountable for that variation ofB, therefore, it must be due to a varying
confounder ofB in the unknown or unconsidered background of list (a). That
means assumingB to be an effect contradicts the homogeneity assumption.
In contrast, ifB is taken to be a cause factor of the underlying structure,
(HC) is not violated. Thus, assuming (HC) to hold for list (a) implies thatB
cannot be seen as a possible effect. The same holds for the other two factors in
{A,B,C}. In R1 and R3A is the only varying factor, while no other factor,
apart fromC, varies in R1 and R4. Hence, there is no factor in list (a) that
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could possibly be an effect of an underlying causal structure in accordance
with (HC). Analogous considerations apply to list (b) of table II.

That means there cannot be a causal structure underlying either list (a) or
(b) that would be compatible with (HC). Neither list comprises a factor that
could be seen as an effect in accordance with (HC), i.e. W = ∅. Whenever
for everyfactorZi contained in the factor frame of a coincidence listC there
are two rows Rk and Rl in C such thatZi is the only factor varying in Rk
and Rl, the background against which the data inC is collected cannot be
homogeneous, for there is no causal structure that could possibly generateC
and accord with (HC). I shall in this context speak ofinhomogeneous coin-
cidence lists. (HC) excludes all inhomogeneous coincidence lists from being
processed byCNA. It must be emphasized, however, that the homogeneity
of coincidence lists is an assumption to which every inference ofCNA must
be relativized. It might well be that a list which is not inhomogeneous in
the sense defined above, as e.g. list (a) in table I, in fact is the result of
an uncontrolled variation of background confounders. In this sense, only a
sufficient and no necessary condition for the inhomogeneityof a coincidence
list is given above. Causal inferences drawn byCNA will always be of the
form “Given that (HC) is satisfied, such and such are the underlying causal
structure(s)”. Homogeneity is never beyond doubt.

Generally, determining whether empirical exhaustivenessand homo-
geneity are satisfied ultimately calls for some form of inductive justification
which, however, is not going to be discussed in the present context. Empirical
exhaustiveness and homogeneity shall simply be taken to bear the inductive
risk that comes with drawing causal inferences based onCNA.

5. Identification of Potential Effects

After having clarified the presuppositions on whichCNA rests, we can now
proceed to introduce the inference rules ofCNA. As anticipated in the pre-
vious section, a first algorithmic step consists in parsing through the factor
frame of a coincidence list in order to determine which of thefactors could
possibly operate as effects within the causal structure to be revealed. This step
yields a setW of factors whose dependencies on the other factors in the corre-
sponding frame are then successively determined byCNA. The identification
of potential effects shall not be considered a proper part ofCNA, for any
sort of context-dependent empirical information or even prior causal knowl-
edge is allowed to enter the determination ofW. For instance, if, in a given
experimental setup, a factorZi is generally instantiatedtemporally before
every other factor in an analyzed frame{Z1, . . . , Zn}, Zi cannot function
as an effect within the underlying causal structure. Orprior causal knowl-
edgecould be available that establishes the members of a proper subset of
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14 Michael Baumgartner

{Z1, . . . , Zn} as root factors, i.e. as factors that are causes, but no effects
within a causal structure. In both cases there is no need to integrate respective
factors inW. CNA does not have to evaluate dependencies among factors
that can be excluded from the set of potential effects to begin with. These
context-dependent constraints onW are not systematizable or, at least, a
systematization shall not be attempted here. Accordingly,no recursively ap-
plicable or computable rule can be provided, which essentially is why the
determination ofW is not seen as a proper part ofCNA.

Still, the determination ofW is not only regulated by spatiotemporal pecu-
liarities of an analyzed process or by prior causal knowledge. As the previous
section has shown, factors can be excluded from the set of potential effects
based on homogeneity considerations: In order for a factorZi to be a potential
effect, it must not be the case that the corresponding coincidence list contains
two rows such thatZi is the only varying factor in those rows. Furthermore,
sinceCNA shall be designed to infer causes of both positive and negative
factors,W, in principle, may contain both positive and negative factors. How-
ever, to every minimal theory of a positive factorZi, there exists an equivalent
minimal theory ofZi, and vice versa.

AC ∨ DE ⇒ B (5)

AD ∨ AE ∨ CD ∨ CE ⇒ B (6)

(5) and (6) are logically equivalent and one of these expressions is a minimal
theory if and only if the other one is too.15 Hence, for simplicity’s sake,CNA
can be confined to identify minimal theories of either positive factors or their
negative counterparts. For this reason, we stipulate that positive factors only
shall be included inW.

These considerations taken together yield the following standard as re-
gards the determination ofW. In order to indicate that the non-computable
identification of the set of potential effects is a precondition of launching
CNA, yet not a proper part thereof, it shall be referred to as “step 0*”.

Step 0* – Identification of potential effects: Given a coincidence listC
over a factor frame{Z1, . . . , Zn}, identify the subsetW⊆ {Z1, . . . , Zn}
such that for everyZi: Zi ∈ W iff

(1) The totality of available information as to the spatiotemporal order-
ing of the instances of the factors in{Z1, . . . , Zn} and the avail-
able prior causal knowledge about the behavior of the factors in
{Z1, . . . , Zn} does not precludeZi to be an effect of the underlying
causal structure.

15 For a detailed proof of the existence of an equivalent minimal theory of a negative factor
to every minimal theory of a positive factor cf. (Baumgartner, 2006), ch. 3.
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(2) C does not contain two rows Rk and Rl such thatZi is the only
factor varying in the coincidences recorded by Rk and Rl.

(3) Zi is a positive factor.

6. Identification and Minimalization of Sufficient Conditio ns

After having identified a non-empty set of potential effects, CNA proper sets
in. In a first stage, sufficient conditions for each member ofW are identi-
fied and minimalized. In order to illustrate this first stage,let us look at a
concrete example. Assume the coincidence list depicted in table III to be
our input data. None of the factors in our exemplary frame{A,B,C,D,E}
shall be excluded from effect position by prior causal knowledge or addi-
tional information as to spatiotemporal orderings. Nonetheless, the set of
potential effects does not correspond to the factor frame oftable III, i.e.
W 6= {A,B,C,D,E}. For reasons of compatibility with (HC), A, B, and
D cannot be effects. For each of these factors there is a pair ofrows in table
III – 〈R1,R4〉 for A, 〈R1,R3〉 for B, 〈R1,R2〉 for D – such that the respective
factor is the only varying factor. Thus, interpreting one ofthese factors to be
an effect of the underlying structure would contradictCNA’s homogeneity
assumption.C and E, thus, are the only potential effects of the structure
generating table III, i.e.W = {C,E}. For each of the factors inW minimally
sufficient conditions are now identified. This is done in foursteps: (1) a factor
Zi ∈ W is selected, (2) sufficient conditions ofZi are identified, (3) these
sufficient conditions are minimalized, (4) the procedure isrestarted at (1) by
selecting anotherZj ∈ W, until all factors inW have been selected. Let us
take a detailed look at these four steps.

Step 1 – Selection of a potential effect:Randomly select one factorZi ∈
W such thatZi has not been selected in a previous run of steps 1 to

Table III. Exemplary coincidence list to be analyzed byCNA.

A B C D E

1 1 1 1 1

1 1 1 0 1

1 0 1 1 1

0 1 1 1 1

0 1 1 0 1

1 0 1 0 0

0 0 0 1 1

0 0 0 0 0
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16 Michael Baumgartner

4. Zi is termedeffect*, the factors in{Z1, . . . , Zi−1, Zi+1, . . . , Zn} are
referred to asremainders.16

Step 2 – Identification of sufficient conditions: Identify all sufficient con-
ditions of the effect*Zi according to the following rule:

(SUF) A coincidenceXk of remainders issufficientfor Zi iff the input
list C contains at least one row featuringXkZi and no row featuring
XkZi.

The order of selecting effects* in step 1 does not matter, as long as it
is guaranteed that, eventually, all members ofW are selected. According to
(SUF), a coincidence of remainders can only be sufficient foran effect* if it
is instantiated at least once. Moreover, a coincidence of remainders contained
in the input list is not sufficient for a selected effect* if itis also instantiated
in combination with the absence of that effect*.

Let us perform these two steps on our example of table III by first select-
ing C as effect*. Step 2 identifies six sufficient conditions ofC, i.e. there
are six coincidences of remainders that conform to (SUF):ABDE, ABDE,
ABDE, ABDE, ABDE, ABDE. The first row (R1) of table III features
the coincidenceABDE in combination withC and there is no row such
that ABDE is contained therein in combination withC. ABDE, thus, is
a sufficient condition ofC according to (SUF). Analogous considerations
apply to the other sufficient conditions mentioned above: R2is constituted
by ABDE, R3 byABDE, R4 byABDE, R5 byABDE, and R6 features
ABDE without either of these conditions being contained in combination
with C in table III.

Before sufficient conditions of the remaining effect*E are identified, we
proceed to minimalize the sufficient conditions ofC.

Step 3 – Minimalization of sufficient conditions: The sufficient conditions
of Zi identified in step 2 are minimalized according to the following
rule:

(MSUF) A sufficient conditionZ1Z2 . . . Zh of Zi is minimallysufficient
iff neither Z2Z3 . . . Zh nor Z1Z3 . . . Zh nor . . . norZ1Z2 . . . Zh−1

are sufficient forZi according to (SUF).

Or operationally put:
16 Selected factors are labelledeffects*to indicate that theypossiblyare the effects of the

causal structure generating the input list. Effects* do notnecessarily turn out to be (actual)
effects at the end of aCNA-analysis. For instance, the set of effects* contained in list (d) of
table I contains all factors in the frame – provided no further information is available that
distinguishes among causes and effects. Yet, none of these effects* is identified as an actual
effect byCNA, because causes and effects cannot be kept apart relative tothat list.
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(MSUF’) Given a sufficient conditionZ1Z2 . . . Zh of Zi, for ev-
ery Zg ∈ {Z1, Z2, . . . , Zh}, h ≥ g ≥ 1, and everyh-tuple
〈Z1′ , Z2′ , . . . , Zh′〉which is a permutation of theh-tuple〈Z1, Z2, . . . , Zh〉:
EliminateZg fromZ1Z2 . . . Zh and check whetherZ1 . . . Zg−1Zg+1 . . . ZhZi

is contained in a row ofC. If that is the case, re-addZg to
Z1 . . . Zg−1Zg+1 . . . Zh and eliminateZg+1; if that is not the case,
proceed to eliminateZg+1 without re-addingZg. The result of
performing this redundancy check on every factor containedin
Z1Z2 . . . Zh is a set of minimally sufficient conditions ofZi.

(MSUF) is nothing but an adaptation of the notion of a minimally sufficient
condition as defined in section 2 to the context of coincidence lists. (MSUF’),
on the other hand, can be seen as an operational expression ofthe analysans of
the notion of a minimally sufficient condition implemented in (MSUF). That
is, (MSUF) might be rephrased as follows: A sufficient condition Z1Z2 . . . Zh

of Zi is minimallysufficient iff it results from an application of (MSUF’). At
the expense of high computational complexity, the formulation of (MSUF’)
is kept as simple as possible above. The order in which factors are elim-
inated from sufficient conditions matters as to the minimalization of such
conditions – thus the systematic permutation of elimination orders.17 In many
cases, however, it is not necessary to completely perform that permutation.
For instance, assume anh-tupleT1 = 〈Z1, . . . , Zd, Zd+1, . . . , Zh〉 has been
minimalized by means of (MSUF’) up to elementZd, that minimalization of
T1 can be taken over for allh-tuplesT2 = 〈Z1, . . . , Zd, Zd+1′ , . . . , Zh′〉 that
coincide withT1 up to elementZd without reapplying (MSUF’) toT2. Or
suppose it has been found thatX1 = Z1 . . . Zd is a minimally sufficient con-
dition of an investigated effect and a sufficient conditionX2 = Z1Z2 . . . Zh

containingZ1 . . . Zd is to be minimalized by means of (MSUF’). In that
case, it is not effective to minimalizeX2 by first eliminating the factors not
contained inX1, for this elimination order would just yieldX1 again.

Further optimizations of (MSUF’) are conceivable, yet are not going to be
discussed here – they will have to await another paper. More importantly, the
intuition behind (MSUF’) can be more colloquially captured: Every factor
contained in a sufficient condition ofZi is to be tested for redundancy by
eliminating it from that condition and checking whether theremaining condi-
tion still is sufficient forZi or not. A sufficient condition ofZi is minimally
sufficient iff every elimination of a factor from that condition results in the
insufficiency of the remaining condition.

17 This is an important deviation from the minimalization of sufficient conditions in the vein
of the Quine-McCluskey optimization of truth functions. Quine-McCluskey optimization only
eliminates conjuncts of a sufficient condition if the latterreduced by the respective conjunct
is actually contained in the truth table. As will become apparent in section 9, this restriction is
a serious limitation of the minimizability of sufficient conditions involved in chainlike causal
structures.
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Performing step 3 on our exemplary case is straightforward.Step 2 yielded
six sufficient conditions ofC. For brevity, I only illustrate the minimalization
of these six conditions by means of two examples. First, takeABDE. That
this sufficient condition is not minimally sufficient forC is seen by removing,
say, D and finding thatABE itself is sufficient forC, for table III does
not contain a row featuringABE in combination withC. ABE still is not
minimally sufficient. For instance, bothB and E can be removed without
sufficiency being lost. There is no row in table III featuringAC, which in-
duces thatA is sufficient and, since it is a single factor that does not contain
proper parts,minimally sufficient for C. There are other ways to further
minimalizeABE: A removal ofA andE still yields a sufficient condition
of C. There is no row in table III featuringBC. ThereforeB is minimally
sufficient forC. Second, let us look at the second sufficient condition ofC

identified by (SUF).ABDE is not minimally sufficient becauseAB can be
removed without sufficiency forC being lost. There is no row in table III
featuringDE in combination withC, which induces thatDE is sufficient for
C. If DE is further reduced, sufficiency is lost. R7 featuresCE and R8CD.
DE, hence, is minimally sufficient forC. Minimalizing the other sufficient
conditions ofC by analogously implementing (MSUF’) does not yield any
further minimally sufficient conditions. All in all, therefore, minimalizing the
sufficient conditions ofC generates the following three minimally sufficient
conditions:A, B, andDE.

After having identified the minimally sufficient conditionsof a first factor
Zi ∈ W, the same needs to be done for all other effects*. We thus needa loop
that bringsCNA back to step 1, if not all factors inW have been assigned
minimally sufficient conditions yet.

Step 4 – (MSUF)-Loop: If all Zi ∈ W have been selected as effects* pro-
ceed to step 5, otherwise go back to step 1.

Applying this loop to our example yields six sufficient conditions ofE. Each
row featuringE comprises a sufficient condition of remainders:ABCD,
ABCD, ABCD, ABCD, ABCD, ABCD. For example, R2 of table III
is constituted byABCD and there is no row featuringABCD along with
E, or R3 comprisesABCD and no row in table III containsABCD in
combination withE. The sufficiency of the other conditions is analogously
demonstrated. Employing (MSUF) or (MSUF’) to minimalize these condi-
tions brings forth three minimally sufficient conditions ofE: B, D, andAC.
The list in table III contains no rows featuring eitherBE, DE, or ACE.

As an overall result of performing the first stage (steps 1 to 4) of CNA on
our exemplary case, we have thus identified the following minimally suffi-
cient conditions of the factors inW:
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A,B,DE for C,

B,D,AC for E.

7. Identification and Minimalization of Necessary Conditions

As the famous Manchester Hooters counterexample against Mackie’s (1974)
INUS-theory of causation18 demonstrates and as articulated in the analy-
sis of causal relevance given in section 2, minimally sufficient conditions
are not generally causally interpretable. Only minimally sufficient conditions
that are moreover non-redundant parts of minimally necessary conditions are
amenable to a causal interpretation. After having identified minimally suffi-
cient conditions, we thus now proceed to first form necessaryconditions of
the effects* from their minimally sufficient conditions andthen minimalize
these necessary conditions. Since factor frames processedby CNA are incom-
plete with respect to underlying causal structures, i.e. there supposedly will
always be many causally relevant factors not contained in input lists, effects*
can only be assigned necessary conditions relative to the homogeneous back-
grounds of corresponding coincidence lists. This is easilyaccomplished by
disjunctively combining the minimally sufficient conditions of each effect*,
yielding one necessary condition relative to an input listC and its background
for each factorZi ∈ W.

Step 5 – Identification of necessary conditions:Identify a necessary con-
dition of each effect*Zi by disjunctively concatenatingZi’s minimally
sufficient conditions according to the following rule:

(NEC) A disjunctionX1 ∨X2 ∨ . . .∨Xh of minimally sufficient condi-
tions ofZi is necessaryfor Zi iff C contains no row featuringZi in
combination with¬(X1 ∨ X2 ∨ . . . ∨ Xh), i.e. no row comprising
X1X2 . . . XhZi.

Performed on our example, step 5 issuesA∨B∨DE andB∨D∨AC as
necessary conditions ofC andE, respectively. Such as to determine whether
the minimally sufficient conditions assigned to the effects* at the end of the
previous section in fact are non-redundant parts of necessary conditions, these
necessary conditions have to be minimalized.

Step 6 – Minimalization of necessary conditions:The necessary condi-
tions of everyZi ∈ W identified in step 5 are minimalized according to
the following rule:

18 Cf. (Mackie, 1974), (Baumgartner and Graßhoff, 2004), ch. 5.
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(MNEC) A necessary conditionX1 ∨X2 ∨ . . . ∨Xh of Zi is minimally
necessary iff neitherX2∨X3∨ . . .Xh norX1∨X3∨ . . . Xh nor . . .
norX1 ∨X2 ∨ . . .∨Xh−1 is necessary forZi according to (NEC).

Or operationally put:

(MNEC’) Given a necessary conditionX1 ∨ X2 ∨ . . . ∨ Xh of Zi,
for every Xg ∈ {X1,X2, . . . ,Xh}, h ≥ g ≥ 1, and everyh-
tuple 〈X1′ ,X2′ , . . . ,Xh′〉 which is a permutation of theh-tuple
〈X1,X2, . . . ,Xh〉: EliminateXg from X1 ∨ X2 ∨ . . . ∨ Xh and
check whether there is a row inC featuring Zi in combination
with ¬(X1 ∨ . . . ∨ Xg−1 ∨ Xg+1 ∨ . . . ∨ Xh), i.e. a row com-
prising X1 . . . Xg−1Xg+1 . . . XhZi. If that is the case, re-addXg

to X1∨ . . .∨Xg−1∨Xg+1∨ . . .∨Xh and eliminateXg+1; if that is
not the case, proceed to eliminateXg+1 without re-addingXg. The
result of performing this redundancy check on every minimally
sufficient condition contained inX1 ∨ X2 ∨ . . . ∨ Xh is a set of
minimally necessary conditions ofZi.

In analogy to (MSUF), (MNEC) is nothing but an adaptation of the notion
of a minimally necessary condition as defined in section 2 to the context
of coincidence lists. (MNEC’), on the other hand, can be seenas an oper-
ational expression of the analysans of the notion of a minimally necessary
condition implemented in (MNEC). That means (MNEC) might berephrased
as follows: A necessary conditionX1 ∨ X2 ∨ . . . ∨ Xh is minimally nec-
essary iff it results from an application of (MNEC’). The formulation of
(MNEC’) has been kept as simple as possible at the expense of its com-
putational complexity. Analogous optimizations as in caseof (MSUF’) are
possible with respect to (MNEC’). The intuition behind (MNEC’) can also be
more colloquially captured: Every minimally sufficient condition contained
in a necessary condition ofZi is to be tested for redundancy by eliminating
it from that condition and checking whether the remaining condition still is
necessary forZi or not. A necessary condition ofZi is minimally necessary
iff every elimination of a minimally sufficient condition from that necessary
condition results in the loss of necessity of the remaining condition.

Let us illustrate the minimalization of necessary conditions by first per-
forming step 6 on the necessary conditionA∨B∨DE of C. That disjunction
is not minimally necessary forC, because it contains a necessary proper part:
A∨B. WheneverC is instantiated in table III, there is an instance of eitherA

or B. Table III does not contain a row featuringABC. DE does not amount
to a non-redundant part of a minimally necessary condition,for wheneverDE

is instantiated in combination withC, there also is an instance ofA∨B. The
same results from applying (MNEC’) toA∨B∨DE. When eliminatingA we
find that the rest is no longer necessary forC, because R3 of table III features
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BDE andC or, more specifically,BDE andC. Hence,A is re-added. The
same is found upon removingB. R5 featuresADE andC or ADE andC,
respectively. RemovingDE, however, does not result in a loss of necessity.
Therefore,DE is not re-added. For analogous reasons,B∨D∨AC does not
amount to a minimally necessary condition ofE either.B∨D∨AC contains
a necessary proper part:B ∨ D. There is no row in table III featuringBDE.
AC is not part of a minimally necessary condition ofE, for wheneverAC is
instantiated, so isB ∨ D, but not vice versa. All in all, therefore, we get the
following minimally necessary conditions for our example:

A ∨ B for C,

B ∨ D for E.

8. Framing Minimal Theories and Causal Interpretation

In the remaining step ofCNA minimal theories are framed from the min-
imally necessary disjunctions of minimally sufficient conditions identified
for eachZi ∈ W in step 6. This is done by means of a twofold procedure:
First, simple minimal theories are formed for eachZi ∈ W, and second, if the
minimal theoriesΦ andΨ of two different factors inW have a non-empty
intersection of factors,Φ andΨ are combined to form the complex minimal
theoryΦ ∧ Ψ, such thatΦ ∧ Ψ conforms to the requirements imposed on the
notion of a complex minimal theory in section 2.

Step 7 – Framing minimal theories: The minimally necessary disjunctions
of minimally sufficient conditions of eachZi ∈ W identified in step 6
are assembled to minimal theories as follows:

(1) For eachZi ∈ W and each minimally necessary disjunctionX1 ∨
X2 ∨ . . . ∨ Xh, h ≥ 2,19 of minimally sufficient conditions ofZi:
Form a simple minimal theoryΨ of Zi by makingX1 ∨X2 ∨ . . .∨
Xh the antecedent of a double-conditional andZi its consequent:
X1 ∨ X2 ∨ . . . ∨ Xh ⇒ Zi.

(2) Conjunctively combine two simple minimal theoriesΦ andΨ to
the complex minimal theoryΦ ∧ Ψ iff Φ andΨ conform to the
following conditions:
(a) at least one factor inΦ is part ofΨ;
(b) Φ andΨ do not have an identical consequent.

19 The constraint as to a minimum of two alternative minimally sufficient conditions for
each effect* does justice to the minimal complexity of a causal structure required such that its
direction is identifiable (cf. section 2).
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In our exemplary case, step 6 ofCNA generates one minimally necessary
disjunction of minimally sufficient conditions for eachZi ∈ W. As we shall
see in section 9, step 6 sometimes identifies more than one minimally neces-
sary disjunction for certainZi ∈ W. Yet, before we look at ambiguities arising
when it comes to framing minimal theories let us conclude theanalysis of our
first exemplary coincidence list. Step 7.1 straightforwardly yields one simple
minimal theory forC andE each:A ∨ B ⇒ C, B ∨ D ⇒ E. While these
theories hold for the specific causal background of table III, it must not be the
case thatA andB are themselves sufficient forC, or B andD are sufficient
for E. Moreover, there may well be further minimally sufficient conditions of
bothC andE. Therefore, suspending the relativization to the background of
table III and expressing these dependencies in their general and background
independent form leads to:

AX1 ∨ BX2 ∨ YC ⇒ C (7)

BX3 ∨ DX4 ∨ YE ⇒ E (8)

The simple minimal theories ofC andE share one common factor. The causal
structure regulating the behavior ofE is not independent of the structure be-
hind the behavior ofC and vice versa. The behavior of the factors in table III,
thus, is regulated by a complex structure. Accordingly, step 7.2 ofCNA urges
us to conjunctively combine (7) and (8) to a complex minimal theory. All in
all, thus, step 7 assigns the following complex and background independent
minimal theory to the coincidence list in table III:

(AX1 ∨ BX2 ∨ YC ⇒ C) ∧ (BX3 ∨ DX4 ∨ YE ⇒ E) (9)

After having assigned a minimal theory to a coincidence list, the by far
most intricate hurdles on the way to uncovering the deterministic causal struc-
ture behind that list have been overcome. As we have seen in section 2,
there exists a straightforward syntactical convention as regards the causal
interpretation of minimal theories. Minimal theories render causal structures
syntactically transparent:

Step 8* – Causal interpretation: Disjuncts in the antecedent of simple min-
imal theories are to be interpreted as alternative (complex) causes of
the factor in the consequent. Conjuncts constituting such disjuncts cor-
respond to non-redundant parts of complex causes. Triples of factors
〈Zh, Zi, Zj〉, such thatZh appears in the antecedent of a minimal theory
of Zi andZi is part of a minimal theory ofZj , are to be interpreted as
causal chains.

This interpretation rule is not to be seen as part ofCNA proper. Nonetheless, it
fulfills an essential function on the way to a causal inference. For this reason,
the rule concerning causal interpretation is starred.
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CNA thus determines the coincidences in our exemplary table IIIto be
the result of a deterministic common cause structure:A andB are parts of
alternative causes ofC, while B and D are parts of alternative causes of
E. Steps 0* to 7 assign a minimal theory to a coincidence list and step 8*
causally interprets that theory.

9. Multiple Theories

As is well known from the literature on causal Bayesian networks, empirical
data is not always unambiguously identifiable to be the result of one particular
causal structure. At times, data could stem from more than one structure.
Such ambiguities are not a particularity of the probabilistic data processed by
procedures analyzing causal Bayes nets, for, as the exemplary coincidence list
analyzed in this section illustrates, ambiguities can alsoarise in case of deter-
ministic data. Consider the list in table IV. It covers the same factor frame as
table III and only differs from the latter with respect to onesingle row: R6.
In order to determine the setW of potential effects, it again is assumed that
no factor in{A,B,C,D,E} is excluded from effect position by prior causal
knowledge or spatiotemporal constraints. For reasons of compatibility with
(HC), however, factorsA, B, andD cannot be effects. Thus, as in case of
table III, C andE are the only potential effects, i.e.W = {C,E}.

Performing steps 2 and 3 onC andE yields the following:

Sufficient conditions ofC: ABDE, ABDE, ABDE, ABDE, ABDE,
ABDE.

Minimally sufficient conditions of C: A, B, DE.

Sufficient conditions ofE: ABCD, ABCD, ABCD, ABCD, ABCD,
ABCD, ABCD.

Table IV. A second exemplary coincidence list over the same factor frame as the list in table
III.

A B C D E

1 1 1 1 1

1 1 1 0 1

1 0 1 1 1

0 1 1 1 1

0 1 1 0 1

1 0 1 0 1

0 0 0 1 1

0 0 0 0 0
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Minimally sufficient conditions of E: A, B, C, D.

After having identified minimally sufficient conditions,CNA proceeds to
first form and then minimalize necessary conditions for eacheffect*.

Necessary condition ofC: A ∨ B ∨ DE.

Minimally necessary condition ofC: A ∨ B.

Necessary condition ofE: A ∨ B ∨ C ∨ D.

Minimally necessary conditions ofE: A ∨ B ∨ D, C ∨ D.

The necessary condition ofC, A ∨ B ∨ DE, contains a necessary proper
part,viz.A∨B. WheneverC is instantiated in table IV, there is an instance of
eitherA or B. DE does not amount to a non-redundant part of a minimally
necessary condition, for wheneverDE is instantiated in combination with
C, there also is an instance ofA ∨ B. The necessary condition ofE, A ∨
B ∨ C ∨ D, not only contains one but two necessary proper parts:C ∨ D

andA ∨ B ∨ D. There is no row in table IV featuringCDE or ABDE.
WheneverE is instantiated, there is an instance ofC ∨D and ofA∨B ∨D.
These two ways to minimalizeA ∨ B ∨ C ∨ D stem from the fact that there
are biconditional dependencies among the minimally sufficient conditions of
E. Within the homogeneous background of table IV,C is instantiated if and
only if A ∨ B is instantiated.

Drawing on this inventory of minimally necessary conditionsCNA frames
one simple minimal theory forC and two forE:

AX1 ∨ BX2 ∨ YC ⇒ C (10)

AX3 ∨ BX4 ∨ DX5 ∨ YE ⇒ E (11)

CX6 ∨ DX7 ∨ YE ⇒ E (12)

The simple minimal theories ofC andE share common factors. The behavior
of the factors in table IV, thus, is regulated by a complex causal structure. In
order to determine what that structure looks like, the simple minimal theories
of C and E are to be conjunctively combined to form a complex theory.
Here an ambiguity emerges: (11) and (12) – if causally interpreted – identify
different direct causal relevancies forE. While according to (11)A andB are
directly causally relevant toE, (12) instead holdsC to be directly relevant to
E. The coincidences in table IV are either generated by a causal chain such
thatA andB are parts of alternative causes ofC while C andD are contained
in alternative causes ofE, or they are generated by a common cause structure
such thatA andB are parts of alternative causes ofC while A, B, andD

are contained in alternative causes ofE. The two causal structures possibly
underlying the list in table IV are graphed in figure 1.

det_kluw2.tex; 18/05/2008; 14:04; p.24



Uncovering Deterministic Causal Structures 25

A

C

B

E

D

E

DA

C

B

(a) (b)

Figure 1. A causal chain and a common cause structure that both could underly the
coincidences in list IV.

Step 7 ofCNA reflects that ambiguity by assigning the following two
alternative complex minimal theories to list IV.

(AX1 ∨ BX2 ∨ YC ⇒ C) ∧ (CX3 ∨ DX4 ∨ YE ⇒ E) (13)

(AX1 ∨ BX2 ∨ YC ⇒ C) ∧ (AX5 ∨ BX6 ∨ DX4 ∨ YE ⇒ E) (14)

Based on list IV alone it is not determinable whether the behavior of
A,B,C,D,E is regulated by a chain or a common cause structure. If
no prior causal knowledge is available that disambiguates the inference,
a disambiguation has to await later expansions of the factorframe and a
corresponding collection of further data. If it is, for instance, found that
by manipulating a further factorF it is possible to manipulateC while
E remains unchanged, the structure behind list IV can unambiguously be
identified as a common cause structure. I systematically investigate the
ambiguities that may arise in the course of uncovering deterministic causal
chains in (Baumgartner, 2008b).

Before we move on to consider the consequences of violationsof (PEX),
emphasis must be put on a major difference between Ragin’sQCA-algorithm
and CNA that is exhibited by this second exemplary application ofCNA.
An application of theQCA-algorithm presupposes that factors (or variables)
that function as causes in an investigated structure are independent and are,
thus, co-instantiable in all logically possible combinations.20 This assumption
allows for a recourse to the well-known Quine-McCluskey optimization of
truth functions in order to minimalize sufficient conditions within theQCA

framework.21 This independence assumption, however, has the considerable
drawback that causal chains cannot be analyzed by means ofQCA, for chains

20 May’s four-field method (cf. (May, 1999)) also requires potential causes of an investi-
gated effect to be independent in this sense. Structures featuring dependencies among causes
such as causal chains, hence, can neither be directly analyzed byQCA nor four-field testing.
For a discussion of the limitations of the four-field method when it comes to uncovering chains
cf. (Baumgartner and Graßhoff, 2004), ch. 12.

21 Cf. (Quine, 1952), (Quine, 1959), (Ragin, 1987).
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involve dependencies among cause factors. As soon as the independence as-
sumption is dropped – as done in the context ofCNA – Quine-McCluskey
optimization no longer eliminates all redundancies. The exemplary coinci-
dence list in table IV features a dependency amongA ∨ B andC which all
could function as causes within the underlying structure. There is no row in
IV reporting a coincidence of, say,A andC. Quine-McCluskey optimization
only eliminates redundant conjuncts of sufficient conditions if a respective
truth table contains two rows which differ only with respectto presence and
absence of that conjunct. Thus, minimalizing the sufficientconditions ofE
in table IV along the lines of Quine-McCluskey would not identify, say, A
as a minimally sufficient condition ofE, notwithstanding the fact that ta-
ble IV does not contain a coincidence ofA andE. Rendering coincidence
lists generated by causal chains amenable to a Boolean analysis, accordingly,
calls for a custom-built minimalization procedure that differs from a standard
Quine-McCluskey optimization insofar as it systematically tests conjuncts
Zi of a sufficient conditionXi for eliminability, irrespective of whether the
corresponding coincidence list contains another sufficient conditionXj that
only differs fromXi with respect to presence and absence ofZi.

10. Empirical Exhaustiveness Violated

As indicated in section 4, assuming the exhaustiveness of analyzed data
(PEX) is a precondition of an unambiguous inference to a deterministic
structure. Nonetheless, (PEX) is not a necessary assumption on which an
application ofCNA must be based, for even inexhaustive data provides some
information as to underlying causal structures. In order toillustrate this,
consider the four coincidences listed in table V which are all likewise
contained in tables III and IV. Against the assumably homogeneous
backgrounds of the coincidences in table VA and B are each minimally
sufficient for the other three factors, while the dependencies amongC, D,
andE are symmetric and, thus, not causally interpretable. Accordingly, CNA

Table V. An exemplary inexhaustive coincidence list.

A B C D E

1 1 1 1 1

1 0 1 1 1

0 1 1 1 1

0 0 0 0 0
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Table VI. (a) and (b) are two extensions of table V that are notcausally interpretable. (c) does
not allow for an integration ofD into the underlying causal structure. Added coincidences are
marked with “+”.

A B C D E

1 1 1 1 1
+ 1 1 0 1 1
+ 1 1 1 0 1
+ 1 1 1 1 0

1 0 1 1 1
0 1 1 1 1
0 0 0 0 0

A B C D E

1 1 1 1 1
1 0 1 1 1
0 1 1 1 1

+ 0 0 0 0 1
+ 0 0 0 1 0
+ 0 0 1 0 0

0 0 0 0 0

A B C D E

1 1 1 1 1
1 0 1 1 1
0 1 1 1 1

+ 0 0 0 1 0
0 0 0 0 0

(a) (b) (c)

assigns the following complex minimal theory to table V:

(AX1∨BX2∨YC ⇒ C)∧(AX3∨BX4∨YD ⇒ D)∧(AX5∨BX6∨YE ⇒ E)
(15)

If (PEX) is assumed to be satisfied, (15) constitutesCNA’s final output. Yet, if
(PEX) is not taken for granted, subsequent extensions of list V are possible.
Additional coincidences, of course, may drastically change CNA’s output.
Depending on whether table V is complemented in terms of, say, tables III or
IV, CNA determines the structure underlying an accordingly complemented
list to be the result of a common cause structure or a chain, respectively.
In both cases,A and B are no longer held to be causally relevant toD.
Nonetheless, the causal relevance ofA andB to C andE is untouched by
extending table V in the sense of either III or IV.

Table V only features four of the 32 logically possible coincidences over
the frame{A,B,C,D,E}. If (PEX) is not taken for granted, any of the 28
remaining coincidences may be observed later on and integrated into table
V. However, only a small subset of all these logically possible extensions
would be causally interpretable. Suppose, for instance, that all 28 remaining
coincidences are in fact incorporated in table V. The resultis a complete
coincidence list, which, as shown in section 3, does not feature any deter-
ministic dependencies. The same consequence follows from extending table
V in terms of lists (a) or (b) in table VI. Neither (a) nor (b) are causally
interpretable because none of the involved factors can be seen as an effect of
an underlying structure. For all factors there is a pair of rows, such that the
corresponding factor is the only varying factor in that pair.22 Thus, lists (a)
and (b) are inhomogeneous and, accordingly,W= ∅. An extension of table
V as indicated in (c), on the other hand, does not altogether resist a causal

22 Cf. section 4.
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interpretation.A andB are still minimally sufficient forC, D, andE, yet
factorD cannot be an effect of the underlying structure any longer. The newly
added coincidence featuresD as the only varying factor when compared to
the last coincidence listed in (c). Thus, (c) is not homogeneous with respect to
D. D cannot be integrated into an underlying structure as root factor either,
for it is not part of a minimally sufficient condition of any ofthe possible
effects contained in (c). In consequence,CNA assigns a minimal theory to
(c) that corresponds to (15) reduced by the middle conjunct.In the same vein,
extensions of table V may be inhomogeneous in regard to any other effects in
(15).

These examples of violated empirical exhaustiveness demonstrate that
causal reasoning based on insufficient data is radically underdetermined.
Nonetheless, inexhaustive lists allow for excluding some causal structures
from possibly underlying a respective list. For example, noextension of the
list in table V will ever revealD to be a cause of eitherA or B. The assumed
homogeneity of table V determines that, even thoughA andB may or may
not be contained in an underlying causal structure,if they are thus contained,
they areroot factorsof that structure. For bothA andB there is a pair of rows
in table V such that they are the only varying factors in that pair, and, as upon
extending coincidence lists no coincidences are removed, all extensions of
table V will be inhomogeneous with respect toA andB. Accordingly,CNA
can be said to identify all causal structures not featuring causal relevance of
either C, D, or E to A and B as possibly underlying the coincidences in
table V. That set of causal structures also includes the empty structure, i.e.
the structure such thatA, B, C, D, andE are mutually causally independent.

Depending on the previous causal knowledge about the structure under
investigation the amount of possible extensions of a given coincidence list
may be narrowed down significantly. Certain causal reasoning methodolo-
gies available in the literature, hence, propose to supplement inexhaustive
data by assumptions embedded in the available causal knowledge about the
examined process.23 Thus, the underdetermination of causal reasoning based
on inexhaustive data may be compensated by additional causal assumptions.
Or put differently, the amount of elements in the set of structures assigned
to an inexhaustive list as V can be reduced if it is e.g. known beforehand
that certain factors cannot be causally related or that somefactor can only
be the effect and not the cause of some other factor. However,whenever
such previous causal knowledge is not available, inexhaustive empirical data
inevitably underdetermines causal inferences.

23 Cf. e.g. (Ragin, 1987), ch. 7, (Ragin, 2000), pp. 139-141, 198-202, 300-308.
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11. Summary

The causal structures and the data analyzed in this paper allviolate the causal
faithfulness assumption and, accordingly, are not processable by standard
algorithms analyzing causal Bayesian networks as presented e.g. in (Spirtes
et al., 2000). The procedure developed in this paper rendersdeterministic
causal structures mechanically analyzable notwithstanding the fact that they
violate faithfulness.CNA implements Boolean techniques and is custom-
built for deterministic structures. Contrary to other algorithms embedded in
the Boolean tradition as Ragin’sQCA-algorithm,CNA does not presuppose
that factors operating as causes in an investigated structure are independent.
Dropping that independence assumption, on the one hand, rendersCNA capa-
ble of analyzing chainlike structures, on the other hand, preventsCNA from
simply drawing on standard Quine-McCluskey optimization when it comes
to minimalizing deterministic dependencies.

Sections 3 and 4 have shown that not every coincidence list iscausally
analyzable. Moreover, in section 9 we have seen that not all coincidence
lists can be unambiguously identified to be the result of one specific causal
structure. Like algorithms for causal Bayes nets,CNA sometimes assigns
multiple structures to corresponding data. Accordingly,CNA cannot be seen
as acompleteinference procedure in the sense that it assigns a specific deter-
ministic structure to a coincidence list whenever the coincidences in that list
are in fact the result of such a structure. Empirical data maybe insufficient to
unambiguously uncover its causal regularities. However, the claim defended
in this paper is thatCNA is acorrectcausal inference procedure in the sense
that wheneverCNA assigns a set containing one or more deterministic struc-
ture(s) to a homogenous coincidence list, that list is in fact generated by a
member of that set.
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