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Abstract

In this paper, we investigate the conditions under which data imbalances, a common

data characteristic that occurs when factor values are unevenly distributed, are problem-

atic for the performance of Coincidence Analysis (CNA). We further examine how such

imbalances relate to fragmentation and noise in data. We show that even extreme data

imbalances, when not combined with fragmentation or noise, do not negatively a↵ect

CNA’s performance. However, an extended series of simulation experiments on fuzzy-

set data reveals that, when mixed with fragmentation or noise, data imbalances may

substantially impair CNA’s performance. Furthermore, we find that the performance

impairment is higher when endogenous factors are imbalanced than when exogenous

factors are concerned. Our results allow us to quantify these impacts and demarcate

degrees at which data imbalances should be considered as problematic. Thus, applied

researchers can use our demarcation guidelines to enhance the validity of their studies.
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Coincidence Analysis (CNA; Baumgartner and Ambühl 2020) is a novel method of

causal learning that belongs to the family of configurational comparative methods (CCMs;

Rihoux and Ragin 2009). Unlike most methods of data analysis, CNA can handle com-

plex causal structures involving conjunctivity (when multiple factors interact to produce an

outcome) and disjunctivity (when alternative pathways produce the same outcome indepen-

dently of one another), which do not necessarily exhibit pairwise dependencies between a

cause and its e↵ect. CNA accomplishes this by fitting complex Boolean functions as a whole

to the data, and it is the only method of its kind capable of detecting links between multiple

outcomes (sequentiality), which are characteristic for causal chains.

As such, CNA has been increasingly applied in a wide range of fields, including po-

litical science (e.g. Haesebrouck 2023), environmental studies (e.g. Edianto, Trencher and

Matsubae 2022), public health (e.g. Yakovchenko et al. 2020), medical informatics (e.g.

Womack et al. 2022), sociology (e.g. Epple and Schief 2016), and organisational behaviour

(e.g. Swiatczak 2021b). In parallel, methodological research has substantially improved the

quality of CNA’s data analysis approach (e.g. Parkkinen and Baumgartner 2021). However,

data distribution requirements have not yet been investigated for CNA. This is all the more

striking as, for example, within the framework of statistical methods, assessing data distri-

butions is a crucial pre-analytical step for selecting appropriate methods and determining the

expected accuracy of analyses. Accordingly, various data distribution characteristics have

been widely shown to create issues for these methods (e.g. von Hippel 2013; Yuan, Bentler

and Zhang 2005).

This study examines how the performance of CNA is a↵ected by a common data distri-

bution characteristic: data imbalances (also referred to as skewness), which occur if factors

have value distributions that partition the cases in the data into sets of notably unequal sizes.

Such imbalances are often encountered in CCM applications. For instance, the vast major-

ity of countries are classified as not wealthy based on the world bank GDP classification

system (Goertz 2019), decisions against the termination of pregnancy after a prenatal diag-

nosis of Down syndrome are very rare (Britt et al. 2000), educational poverty is a marginal

occurrence in developed countries (Glaesser 2021), and employees prevailingly consider

themselves competent (Swiatczak 2021b).
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Skewness has received some attention in the methodological literature on Qualitative

Comparative Analysis (QCA; Ragin 2008), another method from the family of CCMs (e.g.

Oana, Schneider and Thomann 2021; Schneider and Wagemann 2012). However, on the one

hand, those discussions have so far focused on particular data examples, which do not yield

quantitative performance assessments or generalizable conclusions. On the other hand, find-

ings on QCA cannot be transferred to CNA because of substantive algorithmic di↵erences

between the two methods (Swiatczak 2021a). As a consequence, thus far, applied CNA re-

searchers lack a means to determine whether their data are imbalanced to such an extent that

countermeasures should be taken or reliable results can be expected.

The aim of this study is to remedy this situation by systematically investigating to what

extent data imbalances a↵ect the quality of CNA’s output. First, we demonstrate that, con-

trary to previous discussions on skewness, no general claims can be made about the e↵ect of

data imbalances in isolation of other aspects of data quality. More precisely, data imbalances

do not a↵ect CNA’s performance if the data are completely free from noise and fragmenta-

tion. By contrast, it is far from clear how imbalances interact with noise and fragmentation.

Do they a↵ect CNA’s performance solely by exacerbating noise and fragmentation or do they

have their own impact on performance that is independent of other data deficiencies?

Second, to answer these questions, we present the results of a series of simulation experi-

ments benchmarking CNA’s performance under varying degrees of distributional imbalances

while controlling for other data deficiencies. Our experiments are designed as inverse search

trials, meaning that we randomly draw data-generating causal structures from which we

simulate data with varying imbalances and di↵erent combinations of other data deficiencies,

consecutively analyze these data with CNA, and measure how frequently the original causal

structures (or proper parts thereof) are contained in CNA’s output. Overall, we find that

increasing imbalances while keeping noise and fragmentation constant results in impaired

performance, which our results allow to quantify. In other words, imbalances not only ex-

acerbate other data deficiencies but also have a negative impact of their own. This impact

is higher for imbalances in endogenous factors than in exogenous ones. Our study identifies

degrees at which distributional imbalances should be considered problematic and proposes

approaches to address them.
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DATA IMBALANCES IN CNA

CNA Preliminaries

To infer causal structures featuring conjunctivity, disjunctivity, and sequentiality from data,

CNA draws on the so-called (M)INUS theory of causation (Baumgartner and Falk 2023;

Mackie 1974),1 which is specifically designed for the analysis of such structures as it defines

causation via complex Boolean dependencies. Factors are the basic modeling devices of the

MINUS theory and of CNA. They are analogous to variables, meaning they are functions

from (measured) properties into a range of values (typically integers). CNA can process data

comprising crisp- and fuzzy-set or multi-value factors (Baumgartner and Ambühl 2020). For

reasons of space, the ensuing discussion will, however, focus on crisp- and fuzzy-set factors

only.

Values of a crisp- and fuzzy-set factor X can be interpreted as membership scores in the

set of cases exhibiting the property represented by X. That is, a case of type X=1 is a full

member of that set, a case of type X=0 is a full non-member, and a case of type X=�i, where

0 < �i < 1, is a member to degree �i. A case is considered a member of X if its membership

score �i is above the 0.5-anchor, that is, �i > 0.5, and it is a non-member of X if �i  0.5.

In the process of calibration, the meanings of full membership, full non-membership, and

cross-over at the 0.5-anchor are defined for each set and then used to transform raw data

into crisp or fuzzy membership scores (see e.g. Thiem and Duşa 2013; Oana, Schneider and

Thomann 2021 on calibration methods and algorithms).

As the explicit “Factor=value” notation yields convoluted syntactic expressions, we will

use the following shorthand notation, which is conventional in Boolean algebra: “X” signifies

membership in the set of cases exhibiting the property represented by X and “x” signifies

non-membership in that set. Italicization thus carries meaning: “X” designates the factor

and “X” membership in the set of cases with values of X above 0.5. Moreover, we write

“X⇤Y” for the Boolean operation of conjunction “X and Y”, “X + Y” for the disjunction “X
1“INUS” originally is an acronym referring to Insu�cient but Non-redundant parts of Unnecessary but

Su�cient conditions (Mackie 1974, p. 62). Today, it is often used as a mere name for a theoretical framework.
In contrast, “MINUS” explicitly refers to the corresponding causal theory located in the INUS tradition that
assigns causation to only those su�ciency and necessity relations that are rigorously freed of redundancies, i.e.
minimal where M stands for Minimally.
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or Y”, “X ! Y” for the implication “if X then Y”, and “X $ Y” for the equivalence “X if,

and only if, Y”. For crisp-set factors, the Boolean operations are given a rendering in classical

logic (e.g. Lemmon 1965), and for fuzzy-set factors, these operations are rendered in fuzzy

logic (e.g. Baumgartner and Ambühl 2020).2 The implication operator is used to define the

notions of su�ciency and necessity, which are the two Boolean dependencies exploited by

the MINUS theory and CNA: X is su�cient for Y if, and only if, X ! Y; and X is necessary

for Y if, and only if, Y ! X.

To reflect causation, su�ciency and necessity relations need to be rigorously freed of re-

dundancies, which is accomplished if su�cient and necessary conditions are minimal, mean-

ing they do not have proper parts that are, respectively, su�cient and necessary on their own

(Baumgartner and Falk 2023). In sum, using techniques from Boolean algebra, set theory,

and fuzzy logic, CNA infers minimally necessary disjunctions of minimally su�cient condi-

tions of scrutinized outcomes (in disjunctive normal form), so-called MINUS-formulas, from

data. The following is an example:

A⇤b + c⇤D $ E (1)

When causally interpreted, (1) entails that each of A, b, c, and D is a cause of outcome E and

that A and b conjunctively cause E on one path while c and D operate on another path.

In view of its embedding in the MINUS theory, CNA—unlike most other methods—does

not infer its output from associations (e.g. e↵ect sizes) in the data as a whole, rather it exploits

di↵erence-making evidence on the level of individual factor configurations instantiated by

cases in the data. For example, if two configurations �i and � j coincide in all measured

factors except for X and Y, such that �i features X and Y and � j features x and y, this is

evidence—assuming the homogeneity of the unmeasured causal background (for details, see

Baumgartner and Ambühl 2020)—that X makes a di↵erence to Y in the causal background

of �i and � j.3 It follows that X must be part of some conjunction causally relevant for Y .

2In short, the fuzzy logic rendering relevant for CNA is as follows: a negation ¬X amounts to 1 � X, a
conjunction X⇤Y to min(X,Y), a disjunction X + Y to max(X,Y), an implication X ! Y to X  Y , and an
equivalence X $ Y to X = Y .

3As an example consider the configurations �7 and �8 in Table 1a below. Everything is constant in �7 and
�8 except for factors A and Y. These configurations thus provide evidence for the relevance of A for Y .
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Correspondingly, a pair of configurations as �i and � j is called a di↵erence-making pair for

the causal relevance of X to Y (Baumgartner and Falk 2023).

The Problem of Imbalanced Data

As di↵erence-making pairs are the main drivers of CNA’s inference to causation, the value

distributions of factors above and below the 0.5-anchor may a↵ect CNA’s performance. No-

tably in extreme scenarios, where all values of X or Y are above or below the 0.5-anchor,

the data do not contain any di↵erence-making pairs whatsoever, for the simple reason that

all cases are uniformly in or out of X and Y . Without di↵erences in set memberships, no

di↵erence-making pairs and, thus, no di↵erence-making evidence. In order for data to con-

tain reliably exploitable di↵erence-making evidence, the value distributions of analyzed fac-

tors must be balanced so that an appropriate number of cases fall above and below the 0.5-

anchor. Of course, the exact meaning of “appropriate” requires specification—which is the

very topic of this paper.

Based on Oana, Schneider and Thomann (2021), we define the membership ratio (MR)

in a crisp or fuzzy set X to be the ratio of cases in data � with X > 0.5 to all cases in �. 4 For

example, MR(X) = 0.8 means that X takes a value > 0.5 in 80% of the cases in � and a value

 0.5 in 20% of the cases. Whenever the value distributions of a factor do not partition the

cases in the data into sets of roughly equal size, we speak of an imbalanced (or skewed) factor

distribution. Imbalanced distributions come in degrees and are the higher the farther away

membership ratios are from 0.5. However, data imbalances are the norm in applied research

and most of them are unproblematic because they do not impair CNA’s performance. For �

to contain an appropriate amount of di↵erence-making evidence, it su�ces that membership

ratios lie in some interval centered around 0.5. A factor X only counts as problematically

imbalanced if the membership ratio in X is outside of this moderate interval. Problematic

imbalances are those imbalances that our subsequent investigation shows to significantly

weaken CNA’s performance, on average.

For QCA, Oana, Schneider and Thomann (2021) propose that “as a rule of thumb” (p. 48)

ratios outside of the interval [0.8, 0.2] are problematic. But they do not provide an argument
4For multi-value factors, which are beyond the scope of this study, the notion of membership ratio has to

be re-defined to reflect the distribution of cases across all admissible values.
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for why this, rather than, say, [0.9, 0.1] is the relevant interval and they stress themselves

that these are not fixed thresholds. Moreover, as there are many algorithmic di↵erences be-

tween CNA and QCA (Swiatczak 2021a), the question as to the interval outside of which

membership ratios should be considered problematic is entirely open for CNA at this point.

Note that the CCM literature typically discusses data imbalances under the label of skewness

(e.g. Schneider and Wagemann 2012; Oana, Schneider and Thomann 2021; Thomann and

Maggetti 2020), which must not be confused with skewness in statistics, where it is a mea-

sure for the asymmetry of the distribution of a variable around its mean (e.g. Tabachnick and

Fidell 2019). What matters for di↵erence-making evidence, however, are neither distribu-

tional symmetries nor mean factor values, but only the ratios of cases above and below the

0.5-anchor.5 For that reason, we prefer to speak of data imbalances or imbalanced distribu-

tions. Even so, we acknowledge that the term skewness has an established usage in CCMs

and, occasionally, also speak of skewness or skewed distributions.6

The Case of Ideal Data

Before turning to the problem of demarcating the interval of problematic membership ratios,

the special case of ideal data requires separate treatment. The reason is that, in ideal data,

membership ratios can be extreme without any negative consequences for the performance

of CNA. To see this, we first have to specify when data are ideal in configurational causal

modeling. This is best accomplished by example. Thus, assume that the behavior of the

factors in the set F1 = {A,B,C,Y} is regulated by the causal structure corresponding to this

simple MINUS-formula, which we will refer to as the ground truth:

A + B + C $ Y (2)

(2) entails that A, B, and C are three alternative causes of Y . If we take the factors in F1

to be crisp-set and hold additional causes of Y not contained in F1 constant, it follows that

the factors in F1 can be combined in exactly the eight configurations listed in Table 1a. To
5Contrary to many regression methods (Tabachnick and Fidell 2019) or Bayesian network methods

(Spirtes, Glymour and Scheines 2000), CCMs do not rely on distributional normality or symmetry assump-
tions.

6This follows terminological conventions in machine learning, where classification categories that are not
equally represented in the data are interchangeably referred to as imbalanced and skewed (e.g. Chawla 2010).
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A B C Y n
�1 1 1 1 1 1
�2 0 1 1 1 1
�3 1 0 1 1 1
�4 1 1 0 1 1
�5 0 0 1 1 1
�6 0 1 0 1 1
�7 1 0 0 1 1
�8 0 0 0 0 1

(a)

A B C Y n
�1 0.52 0.66 0.82 0.82 1
�2 0.08 0.64 0.88 0.88 1
�3 0.88 0.04 0.84 0.88 1
�4 0.98 0.60 0.44 0.98 1
�5 0.02 0.10 0.72 0.72 1
�6 0.48 0.82 0.10 0.82 1
�7 0.80 0.10 0.48 0.80 1
�8 0.28 0.28 0.14 0.28 1

(b)

Table 1: Subtables (a) and (b) feature ideal data on structure (2). The first (line-separated) column in both
tables labels the configurations, the last column indicates the frequency of a corresponding configuration. In
both tables, the membership ratios are as follows: MR(Y) = 0.875 and MR(A/B/C) = 0.5.

generalize for the fuzzy-set case, Table 1b contains fuzzy-set data corresponding to the crisp-

set configurations in Table 1a. As the factors in F1 take a value above the 0.5-anchor in one

of these tables exactly if they take such a value in the other one, both tables feature the same

configurations.

There are 23 = 8 logically possible ways of combining values above and below the 0.5-

anchor of the 3 exogenous factors in (2), all of which are contained in Tables 1a and 1b.

Moreover, these tables do not contain any configurations incompatible with (2), that is, (2)

is true in all configurations of both tables.7 It follows that Tables 1a and 1b feature nei-

ther fragmentation nor noise.8 Fragmentation of a data set � generated by a causal structure

(ground truth) � over a factor set Fi is defined as the ratio of configurations of the factors in Fi

compatible with � that are missing from �. By contrast, data � feature noise when some con-

figurations in � are incompatible with �, which obtains if the left-hand and right-hand sides

of the ’$’ in the MINUS-formula corresponding to �, lhs(�) and rhs(�), are non-identical

(e.g. due to measurement error or confounding). The higher the mean di↵erences between

lhs(�) and rhs(�) in �, the higher �’s noise level. Accordingly, noise can be measured in
7(2) is true in a configuration �i if, and only if, membership in Y is equal to max(A,B,C) in �i, which is

the fuzzy logic rendering of disjunction (see Footnote 2).
8The CNA notions of fragmentation and noise are related, but not identical, to the QCA notions of limited

diversity and inconsistency. For more see Baumgartner and Falk (2023).
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terms of the mean absolute di↵erence between lhs(�) and rhs(�) in the n cases of �:

Pn
i=1 | lhs(�)i � rhs(�)i |

n
(3)

Data with zero fragmentation and zero noise are ideal data. Thus, Tables 1a and 1b

contain ideal data on ground truth (2) with each configuration realized by exactly one case.

While the distributions of the exogenous factors are balanced in both tables, Y takes a value

above 0.5 in 7 of 8 cases, yielding MR(Y) = 0.875. That is, even though Tables 1a and

1b contain ideal data, they feature an endogenous factor that is imbalanced to a degree that

counts as problematic for QCA subject to Oana et al.’s (2021) rule of thumb. Clearly though,

this extreme imbalance is all but problematic. Rather, it is induced by the form of the ground

truth (2) itself. If case frequencies are kept constant, that is, if we ensure that all config-

urations are realized by an equal amount of cases, any data on structure (2) without very

high membership ratios in Y would feature fragmentation or noise and would, thus, not be

ideal. Despite the extreme imbalance of Y, CNA easily infers the MINUS-formula (2) from

Tables 1a and 1b. Factor Y is imbalanced because, subject to the ground truth (2), there are

three independent paths to produce Y , each of which is activated by simply instantiating one

cause. That means the overwhelming majority of all logically possible configurations of the

exogenous factors produce Y , which, correspondingly, occurs frequently in ideal data with

constant case frequencies.

Plainly, not only high but also low membership ratios can be induced by the structure of

the ground truth. Assume that, instead of (2), the following is the ground truth:

A⇤B⇤C $ Y (4)

If the three causes of Y are not disjunctively concatenated as in (2) but conjunctively as in

(4), three factors must jointly take values above 0.5 for Y to occur, which only happens in one

of eight configurations in the ideal data on (4) in Tables 2a and 2b, where the membership

ratio in Y is MR(Y) = 0.125, while MR(A), MR(B), and MR(C) are again perfectly balanced

at 0.5. Just as in case of Table 1, CNA straightforwardly infers (4) from Tables 2a and 2b.

In general, membership ratios in outcomes in ideal data �id with constant case frequencies
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A B C Y n
�1 1 1 1 1 1
�2 0 1 1 0 1
�3 1 0 1 0 1
�4 1 1 0 0 1
�5 0 0 1 0 1
�6 0 1 0 0 1
�7 1 0 0 0 1
�8 0 0 0 0 1

(a)

A B C Y n
�1 0.60 0.84 0.64 0.60 1
�2 0.20 0.66 0.56 0.20 1
�3 0.90 0.10 0.86 0.10 1
�4 0.86 0.96 0.04 0.04 1
�5 0.16 0.36 0.88 0.16 1
�6 0.14 0.58 0.38 0.14 1
�7 0.68 0.14 0.04 0.04 1
�8 0.24 0.24 0.00 0.00 1

(b)

A B C Y n
�1 1 1 1 1 33
�2 0 1 1 0 1
�3 1 0 1 0 1
�4 1 1 0 0 1
�5 0 0 1 0 1
�6 0 1 0 0 1
�7 1 0 0 0 1
�8 0 0 0 0 1

(c)

Table 2: Subtable (a) features ideal crisp-set data on structure (4), subtable (b) ideal fuzzy-set data on structure
(4), and subtable (c) comprises ideal crisp-set data, with unequal case frequencies, on structure (4). The first
(line-separated) column in all subtables labels the configurations, the last column indicates the frequency of a
corresponding configuration. The data in (a)-(b) have membership ratios of MR(Y) = 0.125 and MR(A/B/C) =
0.5, the data in (c) have MR(Y) = 0.825 and MR(A/B/C) = 0.9.

depend on the structural properties of the ground truth � in the following manner: Given a

fixed number of conjuncts in �, the more disjuncts � has, the higher the membership ratio

in the outcome in �id, as the outcome can be produced more easily (via more paths), that

is, more frequently. Conversely, given a fixed number of disjuncts in �, the more conjuncts

� has, the lower the membership ratio in the outcome in �id, as more conditions must be

satisfied to produce the outcome, which is more di�cult to accomplish and, correspondingly,

occurs less frequently. We refer to imbalances that are induced by the properties of the

ground truth as structure-induced. Note that, in ideal data with constant case frequencies,

exogenous factors are always perfectly balanced, even when endogenous factors are a↵ected

by structure-induced imbalances.

However, ideal data are not required to have constant case frequencies. Some configura-

tions may be realized by more cases than others in ideal data. To illustrate, consider Table

2c, which, like Table 2a, contains ideal crisp-set data on structure (4). But while all con-

figurations in Tables 2a and 2b are realized by exactly one case, in Table 2c, configuration

�1 is realized much more frequently than all others (i.e. by 33 cases). This mismatch in

case frequencies is not due to structural properties of (4), rather, cases realizing configura-

tion �1 just happen to be more frequent than cases realizing the other configurations. The

frequency mismatch in Table 2c yields that all membership ratios are high: MR(Y) = 0.825
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and MR(A/B/C) = 0.9. Plainly, if configuration �8 instead of �1 was realized more fre-

quently, the result would not be high but low membership ratios. We refer to imbalances

that are not induced by the properties of the ground truth as frequency-induced. As the ex-

ample in Table 2c demonstrates, both exogenous and endogenous factors can be a↵ected by

frequency-induced imbalances in ideal data. But importantly, what we showed for CNA’s

analysis of Tables 1a, 1b, 2a, and 2b also holds for Table 2c: the MINUS-formula inferred

by CNA corresponds exactly to the ground truth.

Overall, extreme imbalances, whether structure- or frequency-induced, do not impair

CNA’s performance provided that the data are free of fragmentation and noise, that is, ideal.

As indicated in the last section, di↵erence-making pairs of configurations constitute the main

inferential lever of CNA. Ideal data contain exactly those di↵erence-making pairs that are

characteristic for the underlying ground truth. How often factors take values above the 0.5-

anchor or how frequently configurations are realized by cases is irrelevant for the di↵erence-

making evidence contained in ideal data and, correspondingly, for CNA’s analysis of such

data. If the data contain all and only the di↵erence-making pairs compatible with a ground

truth, the latter will always be recovered by CNA. A demonstration of this is provided in an

R-script contained in the paper’s supplemental online materials.

The same cannot be expected for fragmented or noisy data. CNA has to fit its models

to non-ideal data by lowering the thresholds on its fit measures of consistency and coverage

(Baumgartner and Ambühl 2020), and these measures are sensitive to distributional imbal-

ances generated by case frequencies. Frequency-induced imbalances may push consistency

and coverage scores up or down in non-ideal data, thereby distort the signal in the data, and

make it di�cult to distinguish signal from noise. In the following simulation experiments we

determine how data imbalances a↵ect CNA’s performance when analyzing non-ideal data.

SIMULATION EXPERIMENTS

We run a series of simulation experiments benchmarking the performance of CNA with

noisy or fragmented data featuring varying degrees of distributional imbalances. The exper-

iments are designed as inverse search trials. That is, we first randomly draw ground truths

(data-generating causal structures), second, simulate data from these ground truths featuring
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systematically varied membership ratios in all possible combinations with noise or fragmen-

tation—which we hold constant in most of the trials—, third, analyze the data with CNA,

and fourth measure how frequently the ground truths (or proper parts thereof) are contained

in CNA’s output. We use the implementation of CNA in the R-libraries cna and frscore

(Ambühl and Baumgartner 2023; Parkkinen, Baumgartner and Ambühl 2021). The code of

the test series is available in the paper’s supplemental online materials.

Test Setup and Data Simulation

The series consists of 4 experiments, which di↵er in the investigated data characteristics.

The data analyzed in all experiments are simulated from a stock of 1000 ground truths �1

to �1000, randomly drawn from the factor set F2 = {A, B, C, D, E, F}. As the execution time

of the CNA algorithm increases, on average, with the complexity of the models to be built

and as we process a total of over 100 000 data sets in the whole series, we have to restrict

the maximal complexity of the ground truths �i. Hence, our �i have one outcome only and

a maximum of three alternative paths (i.e. disjuncts), with a maximum of three causes on

each path (i.e. conjuncts), producing the outcome. While many real-life CNA applications

actually target causal structures within that complexity range, it must also be emphasized

that this restriction has consequences for our experiments. Most importantly, ground truths

drawn within that complexity range tend to have endogenous factors with slightly structure-

induced imbalances. More precisely, the average membership ratio in the outcome in ground

truths satisfying our complexity restriction is about 0.4. How this a↵ects our findings will

be discussed in the results section. Finally, to test how frequently data imbalances induce

CNA to erroneously include causally irrelevant factor values (i.e. non-causes) in its models,

we ensure that, in all �i, there is at least one element of F2 missing, values of which, thus,

are causally irrelevant.

The first step of the data simulation process then is the same in all 4 experiments: for

every �i, we generate ideal fuzzy-set data on the factors in F2, with a sample size of 50 cases

each, yielding 1000 ideal data sets �id
1 to �id

1000. For every �id
i it holds that the left- and right-

hand sides of the MINUS-formula corresponding to �i have identical membership scores in

each row of �id
i and that all configurations compatible with �i are represented by at least one
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case in �id
i . In the second and third step, we add noise or fragmentation to �id

i (see Table 3).

In experiment 1, we add fragmentation but no noise, in experiment 2, we add noise but no

fragmentation, and in experiments 3 and 4 we add both fragmentation and noise. Contrary

to experiments 1, 2, and 3, where fragmentation is kept constant at the expense of varying

sample sizes, we keep sample sizes constant in experiment 4 and allow fragmentation to

vary.

Whenever noise or fragmentation are introduced, this is done at random. To randomly

introduce noise into �id
i , we first draw a number � from the interval [0, 0.3]. Second, we

draw a sequence ✏ of normally distributed random errors from the interval [�1, 1] with a

length equal to the number of rows of �id
i such that, over all rows of �id

i , the mean absolute

di↵erence between the scores of lhs(�i) and lhs(�i) + ✏ is equal to �. Third, we replace the

outcome value in every row j of �id
i by the sum of that outcome value and the jth element

of ✏. The resulting data have a noise ratio equal to �, meaning anywhere between 0 and

0.3. To randomly fragment a data set �id
i , we draw a ratio from the interval [0.5, 0.8] and

sample that ratio of configurations from �id
i (without replacement). The resulting data have

a fragmentation ratio anywhere between 0.2 and 0.5. The upshot of introducing noise or

fragmentation into each �id
i in accordance with the requirements of the di↵erent experiments

are 4 ⇥ 1000 non-ideal base data sets of type �k
i , where k refers to the experiment and i

numbers the data set. For example, �2
543 designates the 543rd base data for experiment 2.

In these base data sets, we then, in the fourth step, systematically manipulate case fre-

quencies in order to modify selected membership ratios such that these ratios are transformed

to each value in the following variation sequence:

h0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9i.9

This is done in three di↵erent legs of each experiment. In the first leg, case frequencies in

�k
i are manipulated such that the membership ratio in the outcome (OUT) is transformed to

each value of the variation sequence. In the second leg, a cause (CAU) is randomly selected

in each �k
i and frequencies in �k

i manipulated such that the membership ratio in that cause

9Membership ratios cannot be set to 0 and 1 because, as we have seen in the previous section, all di↵erence-
making evidence would be gone under these conditions, inducing CNA to return nothing.
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assumes all values in the variation sequence. In the third leg, a non-cause (nonCAU) is

selected in each �k
i and its membership ratio correspondingly transformed. That is, in every

leg of an experiment, 9 (length of the variation sequence) frequency-manipulated data sets

are built from every base set �k
i . As there are 3 legs in each of the 4 experiments, we end up

with 9 ⇥ 3 ⇥ 4 ⇥ 1000 = 108 000 test data sets for the whole series. We will refer to them

by �k/r
t/i , where k indicates the experiment, r the targeted membership ratio, t the leg of the

experiment, and i numbers the data. For example, �2/0.4
3/34 designates the 34th data set in the 3rd

leg of experiment 2, in which the membership ratio in a non-cause is transformed to 0.4.

As these data transformations are done by changing case frequencies in the base data, all

resulting membership ratios are frequency-induced. In experiments 1 to 3, case frequencies

are modified by suitably selecting cases from the base �k
i in such a way that the fragmenta-

tion and noise ratios of �k
i are retained (as closely as possible) in the transformed data �k/r

t/i .

Depending on what the initial membership ratio is in �k
i , this selection process may cause

�k/r
t/i to have a much larger sample size than �k

i . Also, the sample sizes of the test data vary

greatly within each leg of an experiment. On average, test sets at the lower and upper ends

experiment 1 experiment 2 experiment 3 experiment 4

resulting mean noise
ratio randomly
introduced from
[0, 0.3]10

- 0.15 0.15 0.15

resulting mean
fragmentation ratio
randomly introduced
from [0.2, 0.5]

0.35 - 0.35 0.21 � 0.41

resulting mean
sample size

23 � 123 53 � 282 36 � 182 57

manipulated
membership ratios
(MR)

MR(OUT ), MR(CAU), MR(nonCAU) varied to each value
in h0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9i

Table 3: Overview of investigated data characteristics in experiments 1-4. The first two rows indicate if noise
or fragmentation was added. In experiments 1-3 fragmentation is kept constant at the expense of varying sample
sizes. In experiment 4 sample size is kept constant at the expense of varying fragmentation ratios.

10While fragmentation ratios can be strictly retained, noise ratios may vary slightly (i.e. by 1% at most) due
to the fuzzy-set nature of the data.
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of the variation sequence have much larger sample sizes than test sets targeting membership

ratios around 0.5.

As sample sizes may influence the performance of CNA, experiment 4 varies membership

ratios in such a way that, apart from noise ratios, also sample sizes are held constant across all

data transformations. Selecting cases from the base set �k
i in such a way that noise and sample

size stay the same can only be accomplished at the expense of varying fragmentation. That

is, the test data �k/r
t/i may have much higher fragmentation than the corresponding base �k

i and

fragmentation also varies within each leg of an experiment. Test sets targeting membership

ratios around 0.5 tend to have lower fragmentation than sets aiming for extreme ratios. Table

3 summarizes the settings for the four experiments.

Data Analysis and Benchmark Criteria

The 108 000 test data sets are analyzed by CNA using the robustness analysis protocol devel-

oped by Parkkinen and Baumgartner (2021). That means that each �k/r
t/i is not only analyzed

at one designated tuning setting of consistency and coverage thresholds but re-analyzed at

all settings in a whole sequence of consistency and coverage thresholds. For our analysis

we choose the sequence h0.65, 0.70, 0.75, . . . , 1i. All MINUS-formulas CNA recovers in

that re-analysis series are collected and their robustness and overall model fit measured and

scored. For every �k/r
t/i , we then return the 95th percentile of top-performing MINUS-formulas

as CNA’s output set S for that data.

The elements of such a set, which contains between 1 and 6 models in our test series, are

indistinguishable on the basis of the evidence contained in �k/r
t/i by current model selection

standards used in CNA. Accordingly, if S comprises more than one MINUS-formula, CNA

cannot determine which of those formulas truthfully represents the ground truth �i; all that

can be said is that at least one of them is true of �i. It follows that a set S featuring, say, three

MINUS-formulas m1, m2, and m3 is to be causally interpreted disjunctively: m1 OR m2 OR

m3 is true of �i.11 If CNA returns multiple models in a real-life discovery context, an analyst

has to rely on data-external sources of information as theoretical background knowledge
11Note that disjunctively interpreting multiple models is not the same as disjunctivity. Disjunctivity is given

when one model m1 entails that more than one causal path produces an outcome. By contrast, an output set S
containing multiple models entails that at least one of these models is true but it is indeterminate which one.
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to select among the candidates.12 As such a data-external background is not available for

simulated data, we take the set S inferred from �k/r
t/i to be CNA’s final output for these data.

All in all, analyzing the data of our entire test series yields 108 000 output sets Si.

We assess the quality of all those output sets based on three complimentary benchmark

criteria, which table 4 summarizes. The first is a qualitative correctness criterion, which has

been repeatedly used in CCM benchmarking before (e.g. Baumgartner and Ambühl 2020;

Baumgartner and Thiem 2020; Baumgartner and Falk 2023).

According to that criterion, what CNA infers from �k/r
t/i counts as correct if, and only if,

that inference is true of the underlying data-generating structure �i. As we have seen above,

that is the case if, and only if, at least one MINUS-formula m j in Si is true of �i, which, in

turn, holds if, and only if, all factor values contained in m j are in fact causes of the outcome

of �i and all conjunctive and disjunctive groupings in m j are in agreement with �i. In other

words, m j is correct if, and only if, it entails no false positives.13 For example, if formula (1)

from our previous example, i.e. A⇤b + c⇤D $ E, is the ground truth, models as A⇤b $ E or

A + D$ E are correct because all factor values contained in these models are in fact causes

of E and all conjunctive and disjunctive groupings are true of (1). By contrast, a model

criterion substance output examples based on (1)

correctness non-empty
output without
false positives

(not) passed passed: A⇤b$ E; A + D$ E
not passed: A⇤B$ E; A + b$ E

completness degree of ground
truth captured

passed to degree A⇤b$ E; A + D$ E
both score 2/4 = 0.5

error-
freeness

no false positives
or empty output

(not) passed passed: A⇤b$ E; ;
not passed: A⇤B$ E

Table 4: Overview of used benchmark criteria with example formulas that (do not) pass respective criteria
assuming that (1), i.e. A⇤b + c⇤D$ E, is the ground truth.

12On a par with Bayesian network methods, but di↵erent from typical regression methods, CCMs automat-
ically build all equally data-fitting models (for more on CCM model ambiguities, see, e.g. Baumgartner and
Thiem 2017).

13These conditions are satisfied if m j is a submodel of �i (e.g. Baumgartner and Ambühl 2020). Further-
more, note that we do not quantify correctness because there currently does not exist a satisfactory quantitative
correctness measure for MINUS-formulas. It is an intricate problem to quantify the seriousness of errors or the
proximity to the ground truth.
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as A⇤B $ E is incorrect because B is not in fact a cause of E, or A + b $ E is incorrect

because A and b are conjunctively and not disjunctively grouped in (1). If CNA does not infer

anything from �k/r
t/i and, thus, Si is empty—say, because consistency or coverage thresholds

cannot be met—Si does not pass the correctness benchmark.

The second benchmark is a completeness criterion that quantifies the informativeness

of correct MINUS-formulas. Making only true claims about �i, as is required to pass the

correctness benchmark, can be easily accomplished by models that make only very few

causal claims. Also, of two correct MINUS-formulas one can be more complex than the

other and, hence, reveal �i more completely. As more informative models are preferable,

the completeness benchmark measures the degree to which the correct MINUS-formulas

in Si exhaustively reveal �i. More specifically, completeness amounts to the ratio of the

complexity of the most complex correct MINUS-formula in Si to the complexity of �i, where

complexity of a MINUS-formula mi is understood as the number of factor values in mi. That

is, contrary to correctness, which can only be either satisfied or not, the second benchmark

can be passed by degree. For example, if (1) is the ground truth, models as A⇤b $ E or

A + D $ E score 2/4 = 0.5 on completeness, as they recover two of the four factor values

contained in the ground truth. When Si is either empty or does not contain a correct MINUS-

formula, completeness is 0 by default.

As a supplement, we measure a third auxiliary criterion, error-freeness, that is also qual-

itative and counts as passed if, and only if, Si as a whole is not false. Contrary to correctness

and completeness, error-freeness is non-zero both if Si contains a MINUS-formula mi that

does not entail a false positive and if Si is empty. As an empty output set is uninformative

and thus suboptimal, error-freeness is not a benchmark on a par with correctness and com-

pleteness, and our subsequent discussion will mainly focus on the latter two benchmarks.

Nonetheless, error-freeness deserves some attention because an empty output is still prefer-

able over a false one.

RESULTS

The results of experiments 1 and 2 are plotted in the bar-charts in Figure 1, Figure 2 shows

the results of experiments 3 and 4. Black bars represent correctness scores, dark grey bars
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completeness scores, and light grey bars depict error-freeness scores. The e↵ects of varying

membership ratios in an outcome, a cause, and a non-cause are presented in separate panels.

The exact values of all scores can be found in the score tables in the paper’s supplemental

online materials. Apart from the benchmark scores, the plots also display fragmentation and

noise ratios as well as sample sizes. All values are means over 1000 CNA analyses of 1000

test data �k/r
t/i . For example, the correctness score of 0.99 depicted by the first (black) bar in

the leftmost panel in the plot of experiment 1 in Figure 1 means that CNA found a correct

MINUS-formula for 99% of the 1000 test data of type �1/0.1
1/i . The fragmentation score of

0.35 superimposed over that bar means that, on average, 35% of rows compatible with the

corresponding ground truths are missing from the 1000 �1/0.1
1/i .14

First and foremost, our results demonstrate, that increasing distributional imbalances may

be associated with decreasing performance even when fragmentation, noise, or sample size

are kept constant. This, in turn, shows that data imbalances do not only exacerbate the

negative e↵ects of other data deficiencies but also have an independent negative e↵ect. In

what follows, we break this main finding down in more detail.

Fragmentation vs. Noise

Data imbalances have weaker e↵ects when paired only with fragmentation than when paired

with noise. In all three legs of experiment 1, where fragmented but noise-free data are pro-

cessed, correctness scores remain almost maximal (between 0.98 and 1). Maximal complete-

ness, however, cannot be achieved because of the fragmentation, which amounts to missing

empirical information about ground truths �i. In legs 1 and 3, varying membership ratios

only barely a↵ect completeness scores (which remain between 0.85 and 0.90) beyond the

impact of fragmentation. In leg 2, distributional imbalances drag completeness down no-

ticeably. If MR(CAU) is set to 0.1 or 0.2, the cause is so rare that it is no longer needed

to cover the outcome and thus is not built into the models. By contrast, in the trials with
14We do not depict the distribution of the benchmark scores using, say, whisker plots because whiskers

would be barely visible. We deliberately chose 1000 ground truths for each trial because the means of the
resulting scores calculated from di↵erent samples of that size were found to stabilize with very small standard
errors of the means (e.g. between 0.0005 and 0.018). Thus, we can have high confidence that trials on a sample
of 1000 ground truths drawn from F2 with the complexity constraints described in the previous section are
representative of the population of all ground truths that can be built from F2 in that manner.
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Fragmentation and no noise (experiment 1)
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Figure 1: Results of experiments 1 and 2, subdivided by the their three legs. Membership ratios are plotted
on the x-axis, benchmark scores (black and grey), noise (red), and fragmentation ratios (orange) are on the
left y-axis, sample sizes (blue) on the right y-axis. All values are means over 1000 CNA runs and data sets,
respectively.

missing from the 1000 �1/0.1
1/i . The exact values of all scores can be found in the score sheet

in the Appendix.

These results demonstrate, first and foremost, that distributional imbalances in the form
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Figure 1: Results of experiments 1 and 2, subdivided by the their three legs. Membership ratios are plotted on
the x-axis, benchmark scores (black and shades of grey), noise (red), and fragmentation ratios (orange) are on
the left y-axis, sample sizes (blue) on the right y-axis. All values are means over 1000 CNA runs.

MR(CAU) = 0.8/0.9, the cause is so frequent that it covers the outcome even without other

causes, which therefore become redundant and are not built into the models. In both scenar-

ios, some causes are missing from CNA’s models in addition to those that are missing due to

fragmentation alone.

In experiments 2 to 4, where data feature noise, both correctness and completeness scores

drop significantly compared to experiment 1 because CNA cannot persistently avoid false
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outcome (OUT) cause (CAU) non-cause (nonCAU)
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Fragmentation and noise, varying sample size (experiment 3)
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Figure 2: Results of experiments 3 and 4, subdivided by the their three legs. Membership ratios are plotted
on the x-axis, benchmark scores (black and grey), noise (red), and fragmentation ratios (orange) are on the
left y-axis, sample sizes (blue) on the right y-axis. All values are means over 1000 CNA runs and data sets,
respectively.

respectively; and in the third legs, between 0.87 and 0.9 and between 0.45 and 0.55, respec-

tively. The main reason for these performance drops is that CNA cannot persistently avoid

false positives anymore in the presence of noise, which, after all, amounts to incorrect infor-

22

Figure 2: Results of experiments 3 and 4, subdivided by their three legs. Membership ratios are plotted on the
x-axis, benchmark scores (black and shades of grey), noise (red), and fragmentation ratios (orange) are on the
left y-axis, sample sizes (blue) on the right y-axis. All values are means over 1000 CNA runs.

positives in the presence of noise, which, after all, amounts to incorrect information about

�i. Moreover, in trials when all models in Si make false claims about �i, both correctness and

completeness are 0. Completeness drops more than correctness because CNA is designed to

keep false positives to a minimum, meaning that the method abstains from including a factor

value in a model, if its causal relevance is not su�ciently corroborated by the data. The more

cautiously a method operates, the less causal inferences it draws, the lower the chances that
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false positives are committed, yet the less completely �i is recovered.

Owing to its cautiousness, CNA frequently abstains from drawing any inferences when

the outcome is very rare in experiments 2 to 4. The result are empty output sets Si in up to

25% of the trials, which can be read o↵ the large di↵erence in correctness and error-freeness

scores at the lower end of the variation sequence. Error-free trials that do not pass correctness

are trials with empty outputs. In consequence, error-freeness scores remain above 0.75 in all

experiments even when the outcome is very rare. By contrast, when MR(OUT ) = 0.9, there

are no longer any empty outputs, to the e↵ect that error-freeness and correctness coincide and

drop well below 0.75. The reason is overfitting. Due to the noise, conjunctions of only one

or two factor values are not consistently su�cient for the outcome, such that CNA builds

rather complex minimally su�cient conditions, on average. And in order to cover a very

frequent outcome with complex conditions, large disjunctions of many of these conditions

are needed. In 35% to 40% of the trials on noisy data at MR(OUT ) = 0.9, CNA’s output sets

contain only overfitted models.

Performance Peaks

Another feature of the results obtained in the first leg of experiments 2 to 4 is that, across

all variations of MR(OUT ), CNA scores highest on completeness at MR(OUT ) = 0.4 and

highest on correctness at MR(OUT ) = 0.6. Why are these performance peaks o↵-centered?

To answer this question recall from the test setup that outcomes have an average structure-

induced membership ratio of roughly 0.4 in the ground truths �1 to �1000, which, in turn,

stems from the complexity restriction imposed on them. Deviations from structure-induced

membership ratios in our experiments are due to biased case frequencies and hence tend not

to be faithful to the structural properties of �i. The more we increase that frequency bias as

we move through the variation sequence, the higher the chances that CNA builds elements

into its models that fail to have counterparts in �i. The complex models contained in output

sets Si have the highest chances of being true of �i in trials at MR(OUT ) = 0.4 because, in

these trials, case frequencies are manipulated the least, on average, meaning that membership

ratios are most faithful to the structural properties of �i. The higher the chances that complex

CNA models in Si are true, the higher CNA’s completeness scores.
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But then, why are the correctness scores, even though they are good at MR(OUT ) = 0.4

(i.e. between 0.85 and 0.88), not the highest in those trials as well? To understand that, recall

that we analyze each data set at a whole range of threshold combinations, going down to

consistency and coverage set to 0.65. The lower these thresholds, the less accurately models

are required to account for the outcome, the higher the chances that very sparse models pass

the thresholds. And the sparser a MINUS-formula mi, the less causal claims it makes, which,

in return, increases the probability that mi does not make any false claims and, thus, is true

of �i. The sparsest possible MINUS-formulas are one-cause formulas of type B$ A. In our

test series, CNA’s output sets contain the most one-cause formulas at MR(OUT ) = 0.6. The

fact that the MINUS-formulas with the highest a priori probability of being true are the most

frequent in the trials at MR(OUT ) = 0.6 pushes CNA’s correctness score even higher than it

is at MR(OUT ) = 0.4 (i.e. to scores between 0.98 and 0.99).

Outcome vs. Causes vs. Non-Causes

Finally, our results show that extreme membership ratios have varying performance impacts

depending on whether they a↵ect the outcome, a cause, or a non-cause. In all experiments,

extreme membership ratios in non-causes have no significant e↵ect on performance beyond

fragmentation and noise. That means they do not induce CNA to erroneously include non-

causes in models more frequently than they are included because of other data deficien-

cies. In contrast, extreme membership ratios in causes have sizeable e↵ects on completeness

scores in all experiments. The same mechanism as in experiment 1 accounts for this finding

in all other experiments. That is, rare causes are often not included in models and frequent

causes tend to render other causes redundant, which then are not included. In addition, ex-

treme membership ratios in causes, when combined with noise (i.e. in experiments 2-4),

induces a noticeable drop in correctness. Still, correctness scores do not fall below 0.79 and

correctness drops are counterbalanced by error-freeness scores well above 0.8, meaning that

CNA repeatedly issues no models at all.

In general, when data feature noise (i.e. in experiments 2-4) the performance impact is

much higher if the endogenous factors are imbalanced than if exogenous factors are con-

cerned. The reason is that while every �i has only one outcome, most �i have several causes,
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yet only the frequency of one of these is manipulated in our experiments. Thus, whereas

frequency distortion in one cause can be counterbalanced by correctly inferred causal claims

on other causes, this is not possible with frequency distortion in the outcome which then

tends to hinder the correct recovery of the whole �i.

DISCUSSION

We set out to answer the question whether data imbalances have their own impact on CNA’s

performance. In case of ideal data, even extreme imbalances have no such impact. How-

ever, we have seen that in case of non-ideal data, which are common in real-life research

settings, extreme membership ratios a↵ect CNA’s performance. It remains to be determined,

first, which membership ratios should count as problematic for CNA, second, what counter-

measures can be taken to resolve problematic distributional imbalances, and, third, what our

study’s limitations are.

Demarcating Problematic Membership Ratios

In light of our results, the answer to the first question depends on an array of conditions such

as the quality of the data at hand, the type of factor(s) with extreme imbalances, whether

the analysts are primarily interested in correct or complete models, and how willing they

are to take a risk. Accordingly, there does not exist a general and objective demarcation

between problematic and unproblematic membership ratios. In what follows, we determine

whether a performance drop in a particular benchmark measure within a leg of an experiment

is problematic by comparing it to the best benchmark score in that leg. In order for a drop to

count as problematic we require the di↵erence to the best performance to be higher than 20%.

Readers with a di↵erent assessment of what counts as problematic have to correspondingly

adjust our subsequent demarcations.

If it can be plausibly assumed that the data are collected against a homogeneous back-

ground, such that noise is negligible and the only serious data deficiency is fragmentation,

distributional imbalances tend not to a↵ect performance beyond fragmentation. The only

exception, as the second leg of experiment 1 shows, is that causes with extreme membership

ratios noticeably reduce the completeness of CNA’s models. At MR(CAU) = 0.5, CNA
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recovers 91% of the ground truths, on average, whereas this percentage drops to 76% at

MR(CAU) = 0.1 and to 73% at MR(CAU) = 0.9, which amount to performance drops of

16.5% and 19.8%, respectively. Although the latter drop borders on the problem zone iden-

tified above, the fact that the overall completeness scores remain high throughout the second

leg of experiment 1 lets us confidently conclude that these completeness drops, though size-

able, are not to be considered problematic.

This changes when the data are noisy. In the second leg of experiment 2, the best com-

pleteness score is 0.55 at MR(CAU) = 0.5; it drops by more than 20% at MR(CAU) = 0.1

and MR(CAU) > 0.8, and similarly in the second legs of experiments 3 and 4. Hence, in the

presence of noise, membership ratios of causes outside of the interval [0.2, 0.7] drag down

completeness to a problematic extent. It follows that somebody with an interest in learning

as much as possible about the ground truth should consider countermeasures.

The same does not hold if analysts are primarily interested in correct models, that is, in

reliably finding parts of the data-generating structure. While MR(CAU) = 0.9 has no e↵ect

on correctness at all, correctness drops from a solid score of 0.9 at MR(CAU) = 0.5/0.6

by about 12% to 0.79 at MR(CAU) = 0.1 when the data are noisy. But at the same time,

error-freeness remains between 0.83 and 0.85, meaning that the loss in correctness is to

a substantive degree due to empty outputs. That is, there is a slightly increased risk of

inferring something false at MR(CAU) = 0.1, but that increase is not severe enough to call

for countermeasures against distributional imbalances; if an error risk of 15% is considered

too high, taking measures against the noise in the data would be more e↵ective.

The most problematic impact extreme membership ratios have on the correctness of

CNA’s output occurs when endogenous factors are imbalanced in noisy data. In experi-

ments 2 to 4, correctness and error-freeness collapse at MR(OUT ) = 0.9. While correctness

and error-freeness are between 0.84 and 0.87 at MR(OUT ) = 0.8 in the experiments with

noise, these scores drop to values between 0.6 and 0.65 at MR(OUT ) = 0.9. Compared to

the best correctness scores at MR(OUT ) = 0.6, that is a performance drop of almost 40%,

down to a level where, in 2 out of 5 CNA runs, all resulting models are fallacious. That is

unquestionably an instance of a problematic distributional imbalance.

The situation is not so clear in case of low membership ratios in outcomes. At MR(OUT ) =
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0.1/0.2, CNA only recovers a true model in 58% to 67% of the trials, but these low correct-

ness scores are largely due to the fact that CNA often abstains from inferring any models at

all. When conditionalized on the trials that produce non-empty outputs, correctness does not

fall below 0.75 at MR(OUT ) = 0.1/0.2 in any of our experiments. If a fallacy risk of 25%—

in contexts where up to 30% of the observations are distorted by noise—is acceptable to the

analyst, even an extremely rare outcome hence does not call for immediate countermeasures.

Instead, CNA could be run to see if an output is produced. If that is not the case, the low

membership ratio in the outcome is the likely source of the problem, making it an instance

of a problematic imbalance after all.

Finally, at MR(OUT ) = 0.1 the completeness of the output CNA infers from noisy data

is reduced by about 25%, which is deep within the problem zone. Similarly, high outcome

membership ratios are very consequential for the completeness of CNA’s output in the pres-

ence of noise. At MR(OUT ) = 0.7 completeness drops between 25% and 30% compared

to the optimal membership ratio; at MR(OUT ) = 0.8 completeness is cut in half, and at

MR(OUT ) = 0.9 two thirds of the information CNA recovers at the optimal membership

ratio are lost, on average. Hence, if maximal informativeness is a research objective and the

data cannot plausibly be assumed to be noise-free, membership ratios in the outcome outside

of the interval [0.2, 0.6] should be considered problematic.

In sum, based on our convention that performance drops need to be larger than 20%

to count as problematic, we propose the following demarcation lines for problematic data

imbalances, assuming a typical real-life research with the following two characteristics: first,

neither fragmentation nor noise can plausibly be excluded, and second, only outcomes and

candidate causes can be distinguished, but the latter cannot be grouped into causes and non-

causes. If the analyst is primarily interested in finding a correct model, only MR(OUT ) = 0.9

is problematic. Yet, if the research context requires learning as much as possible about the

data-generating structure, membership ratios in outcomes outside of the interval [0.2, 0.6] or

membership ratios in candidate causes outside of the interval [0.2, 0.7] are problematic.
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Resolving Problematic Distributional Imbalances

When it comes to taking countermeasures, problematic distributional imbalances a↵ecting

the correctness of CNA’s output must be distinguished from problematic imbalances a↵ect-

ing completeness. The former type requires countermeasures before CNA is applied to the

data, whereas the latter type may be addressed after initial applications of CNA are found

not to deliver satisfactory results. If an outcome is imbalanced at MR(OUT ) � 0.9, CNA’s

output cannot be trusted in non-ideal discovery circumstances, making it imperative to take

immediate action. By contrast, if the data are imbalanced in a way that does not create prob-

lems for correctness but only for completeness, say, an outcome has a membership ratio of

0.2 or 0.1, the analyst may well run an analysis and inspect the results before any action is

taken. Our simulations indicate that the likelihood of not receiving any model are high. But

if a non-empty output is produced under such circumstances, it may be given consideration.

In fact, we have seen that such outputs are correct in 80% of the trials. Thus, if these outputs

are informative enough for the research question at hand and analysts are ready to accept a

fallacy risk of 20%, they can take such outputs seriously without addressing distributional

imbalances. Yet, if it turns out that CNA does not return any models or that returned mod-

els are not informative enough, resolving distributional imbalances will be a promising path

forward.

There are three main approaches to resolve distributional imbalances: (1) adding or re-

moving cases, (2) adjusting membership scores via recalibration, and (3) negating values of

imbalanced factors. We take them in turn. Approach (1) consists in suitably changing the

sample of cases in the data. To resolve problematically high membership ratio in X, cases

can be added to the data in which the factor X takes values below 0.5 or cases can be removed

in which X takes values above 0.5. Analogously, if MR(X) is problematically low, cases with

membership scores above 0.5 can be added or cases with membership scores below 0.5 re-

moved. Both adding and removing cases requires to reassess the case selection decisions in

the study design. For instance, complementing the data in a study analyzing employees from

a particular industry by cases featuring employees from another (comparable) industry shifts

the study’s analytical focus to employees in the union of both industries. Or, cases can be

removed from that study by shifting the level of analysis from all employees in an industry
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to a particular group of employees from that industry, say, employees without leadership po-

sitions. Plainly, such case selection adjustments should not only be assessed based on their

capacity to resolve problematic distributional imbalances but, in the first place, they must be

theoretically meaningful and in line with the research interests at hand. Avoiding problem-

atic imbalances is only one constraint among many to be taken into account when selecting

cases. Moreover, note that after cases have been added or removed in order to resolve the

problematic imbalance of some factor X, the distributions of all factors must be reassessed,

not just of X. The reason is that changing the data basis might resolve the distributional

problem for X but create it for another factor.

Moreover, other constraints must be kept in mind when adding and removing cases to

and from the data. First, added cases should have homogenous causal backgrounds and they

should be comparable to the cases already contained in the data. For example, if a study

a↵ected by problematic imbalances is concerned with Western democracies, adding cases

from the set of Asian autocracies will, in all likelihood, induce homogeneity violations and,

thereby, render the resulting models uninterpretable. Second, removing cases should, if pos-

sible, not increase fragmentation, that is, it should not reduce the number of configurations

instantiated in the data and thus reduce the amount of di↵erence-making evidence. In other

words, cases should primarily be removed that instantiate configurations which have various

other cases instantiating them in the data.

By contrast, when membership ratios are modified by recalibration in the vein of ap-

proach (2), the imbalance of one factor X can be tackled without a↵ecting the distribution

of the other factors. To this end, the number of X’s values above and below the 0.5-anchor

is changed by moving the cross-over calibration threshold defining the 0.5-anchor. If X is

too frequent, that threshold is moved up such that less cases are calibrated to instantiate

X, whereas if X is too rare, the cross-over threshold is moved down such that more cases

instantiate X.

Note that recalibration also requires changes to the study design, as shifting calibration

thresholds changes the subject matter of the analysis; it moves the analytical interest from

a problematically imbalanced factor to a di↵erent, non-problematic one. Such adjustments

must, of course, also be theoretically justified and in line with the study’s research goals. To
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illustrate, shifting the subject matter via recalibration can be an option when the imbalanced

factor represents a concept for which a bias towards higher or lower values that is not induced

by the causal structure under investigation can be observed. A concept as self-perceived com-

petence (or self-e�cacy) is an example for which many studies observe a general positivity

bias resulting in high membership ratios (e.g. Swiatczak 2021b; Gabriel et al. 2018; Schnell,

Höge and Pollet 2013). If the aim of the study is not to investigate the causal structure under-

lying overly positive competence assessments, the bias can be counterbalanced by changing

the subject matter of the analysis from, say, “competent employees” to “highly competent

employees”. In addition, it is clear that such recalibrations should also follow general cali-

bration guidelines (e.g. Oana, Schneider and Thomann 2021). Unproblematic distributions

are merely one constraint among many to be considered in the calibration process.

Finally, while it can happen that approaches (1) and (2) are inapplicable because there

may not be justifiable ways of changing the data basis or the calibration thresholds, approach

(3) is always applicable. It amounts to simply replacing an X with a problematic membership

ratio by its negation x, that is, 1�X. To illustrate, consider a scenario where X is an outcome

with a membership ratio of 0.7 and an initial CNA analysis produces a model that is not

informative enough. According to our findings, X’s membership ratio counts as problematic

in that scenario. If X is now replaced by x, the problematic membership ratio becomes a ratio

of MR(x) = 0.3 (i.e. 1 � 0.7), which our results show not to count as problematic. In fact,

we have found that an outcome membership ratio of 0.3 is almost optimal for completeness

maximization in the presence of fragmentation and noise.

Not only is approach (3) always applicable, it also does not require intricate consider-

ations on changing the data basis or the calibration. On the downside, however, it is not

always possible to resolve problematic imbalances by simple negation. In particular, when

both X and 1 � X fall into ranges of problematic membership ratios, which, according to our

findings, holds if X is an exogenous factor, approach (3) does not solve the problem. Also,

while the adjustments of the study design induced by approaches (1) and (2) may be small,

negating outcomes or causes amounts to reversing the subject matter of the study entirely. It

shifts the focus from investigating the presence of factors to their absence.
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Limitations

Our study’s limitations originate from design decisions we had to take when simulating data.

For reasons of computational feasibility, we had to restrict the complexity of the assumed

ground truths to structures with one outcome and a complexity range of one to three dis-

juncts, each consisting of one to three conjuncts. Ground truths were randomly drawn from

that complexity range, to the e↵ect that resulting ground truth complexities are normally

distributed in that range. As pointed out before, the outcomes in those ground truths have a

mean structure-induced membership ratios of about 0.4, which, ultimately, o↵-centered the

demarcation lines we found for problematic imbalances.

While we are confident that the (unknown) ground truths in a majority of actual CNA ap-

plications fall into our complexity range, causal structures analyzed by CNA may, of course,

have higher complexities, which moreover may not be normally distributed. We suspect that

the intervals demarcating problematic distributional imbalances will be more centered, on

average, if more complex grounds truths are taken into account, but our study provides no

basis for making such a determination. And it is an open question what membership ratio

intervals should count as problematic, if the complexities of real-life causal structures are

not normally distributed. At the same time, as ground truth complexities do not influence the

distributions of mutually independent exogenous factors, we have every reason to expect that

our findings on causes and non-causes can be generalized to single-outcome ground truths

with higher complexities—even if the latter are not normally distributed.

The same does not hold for ground truths with multiple outcomes. Although its capacity

to analyze data stemming from multi-outcome structures is one of CNA’s distinctive quali-

ties, we could not integrate that additional layer of complexity into this study. Investigating

problematic membership ratios for such structures, hence, remains an important open ques-

tion.

Furthermore, again for reasons of computational feasibility, we could not systematically

vary fragmentation and noise in a controlled manner, even though it is very likely that demar-

cation lines for problematic data imbalances change with varying levels of fragmentation and

noise. Also, fragmentation and noise may be biased in real-life research contexts, to the ef-

fect that imbalances a↵ect CNA’s performance in ways unforeseen by our analysis. Finally,
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when manipulating distributions of exogenous factors we did so for only one exogenous

factor in each trial. But, of course, in real-life settings multiple exogenous factors may be

imbalanced to varying degrees. It is to be expected that extreme imbalances in more than

one such factor interact and negatively impact on performance much beyond the impact we

found in our experiments. But quantifying that impact has to await another occasion.

Finally, the reader shall be reminded that our criterion for demarcating problematic from

unproblematic performance drops is negotiable. A reader with a di↵erent view of what

counts as a problematic drop in performance is invited to correspondingly adjust the mem-

bership ratio intervals that call for measures against imbalances.

Outlook

This is the first study investigating how data imbalances a↵ect the performance of Coinci-

dence Analysis (CNA), in particular, and the first study quantifying that impact for a CCM,

in general. Even though CCMs, contrary to many other methods, do not infer causation from

distributional properties of the data but from di↵erence-making pairs contained therein, our

results show that extreme imbalances can a↵ect both the correctness and the completeness

of CNA’s output. The reason, in a nutshell, is that extreme distributional imbalances induce

CNA to mistake noise for signal. That mechanism remains underinvestigated despite our

study. Further analyses are needed to determine how varying membership ratios impact on

performance under the discovery circumstances we had to bracket for reasons of computa-

tional feasibility. And we submit that similar studies aiming at quantifying the performance

impact are needed for other CCMs, such as Qualitative Comparative Analysis (QCA).

Another avenue for future research derives from the fact that even extreme distributional

imbalances do not negatively a↵ect CNA’s performance when applied to ideal data. We

envisage that the closer analyzed data are to ideal data, the lower the negative impact of such

imbalances. It follows that a technique estimating the closeness of the data to ideality would

likewise provide an estimate for the severity of the performance impact to be expected from

problematic distributional imbalances. Such a technique is lacking at the moment.

In sum, our study shows that the problems posed by data imbalances are to be taken

seriously—more seriously than they currently are—by both methodologists and applied re-
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searchers. The former need to address the many remaining questions surrounding distri-

butional imbalances and CNA (or CCMs, more generally). The latter should learn to take

analytical decisions, from the study design to the interpretation of the results, with an eye on

distributional imbalances.
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