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Abstract

Consistency and coverage are two core parameters of model fit used by configurational

comparative methods (CCMs) of causal inference. Among causal models that perform

equally well in other respects (e.g. robustness or compliance with background theories),

those with higher consistency and coverage are typically considered preferable. Finding

the optimally obtainable consistency and coverage scores for data δ, so far, is a matter

of repeatedly applying CCMs to δ while varying threshold settings. This paper intro-

duces a procedure called ConCovOpt that calculates, prior to actual CCM analyses, the

consistency and coverage scores that can optimally be obtained by models inferred from

δ. Moreover, we show how models reaching optimal scores can be methodically built in

case of crisp-set and multi-value data. ConCovOpt is a tool, not for blindly maximizing

model fit, but for rendering transparent the space of viable models at optimal fit scores

in order to facilitate informed model selection—which, as we demonstrate by various

data examples, may have substantive modeling implications.

1 Introduction

Over the past three decades, different variants of configurational comparative methods

(CCMs) have gradually been added to the toolkit for causal data analysis in many disciplines,

ranging from social and political science to business administration, evaluation science, and

on to public health and psychology. CCMs are designed to investigate causal structures fea-

turing conjunctural causation and equifinality, which tend to prevent pairwise (linear) depen-
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dencies among analyzed variables and, hence, induce problems for many standard method-

ological frameworks. While other methods search for causal relations as characterized by

counterfactual or probabilistic theories of causation (e.g. Lewis 1973; Suppes 1970), CCMs

trace causation as defined in the tradition of Mackie’s (1974) INUS-theory. CCMs do not

quantify effect sizes but place a Boolean ordering on sets of causes by grouping their el-

ements conjunctively, disjunctively, and sequentially. And unlike the models produced by

many other methods, CCM models do not relate variables to one another but concrete values

of variables (cf. Thiem et al. 2016).

The most well-known CCM is Qualitative Comparative Analysis (QCA) (Ragin 1987;

Cronqvist and Berg-Schlosser 2009; Ragin 2008). Coincidence Analysis (CNA) is a more

recent addition to the family of CCMs (Baumgartner 2009; Baumgartner and Ambühl 2020).

There are various differences between QCA and CNA—in the underlying methodological

principles, in the implemented algorithms, or in the search targets—, but also important

commonalities. Both methods process configurational data featuring crisp-set, fuzzy-set, or

multi-value variables (Thiem 2014), which are called factors in CCM jargon. They both ex-

ploit relations of sufficiency and necessity for causal inference and output models accounting

for the values taken by endogenous factors in terms of redundancy-free Boolean functions

of exogenous factor values. And they share two of their core parameters of model fit, which

constitute the topic of this paper: consistency and coverage (Ragin 2006). Informally, con-

sistency reflects the degree to which the behavior of an outcome obeys a corresponding

sufficiency or necessity relationship or a whole model, whereas coverage reflects the degree

to which a sufficiency or necessity relationship or a whole model accounts for the behavior of

the corresponding outcome. What counts as acceptable scores on these parameters is defined

in threshold settings determined by the analyst prior to the application of QCA or CNA.

Among causal models that perform equally well with respect to other criteria, for exam-

ple, robustness and compliance with case knowledge or background theories, the ones with

the higher aggregate of consistency and coverage are considered preferable. This raises the

question of how to systematically find the models with optimal consistency and coverage.

Currently, neither the procedural protocols of QCA nor of CNA have answers to that ques-

tion on offer. Rather, optimizing consistency and coverage is a matter of repeatedly running

QCA and CNA on the data while varying relevant thresholds and comparing the fit scores of

resulting models. Such a trial-and-error approach is neither guaranteed to recover all consis-

tency and coverage optima, of which there may be many, nor is it efficient, as it may require a
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multitude of data re-analyses. Variations in the thresholds may induce substantive changes in

the issued models as well as in their fit scores. These changes may not be proportional to the

threshold variations. That is, higher thresholds are not guaranteed to produce models with

higher aggregates of consistency and coverage. In consequence, a wide range of threshold

settings may have to be searched in fine-grained steps.

This paper shows that it is possible to identify optimal consistency and coverage scores of

CCM models inferable from data δ independently of actually applying CCMs to δ. We intro-

duce an explicit procedure, called ConCovOpt, that calculates all consistency and coverage

optima for δ, within certain computational limitations, prior to CCM analyses. ConCovOpt

is complemented by a second procedure, called DNFbuild, that purposefully builds models

reaching optimal scores for crisp-set and multi-value data. For these data types, models are

hence guaranteed to exist at the consistency and coverage optima. ConCovOpt can also be

applied to fuzzy-set data, in which case optimas amount to upper bounds that cannot possi-

bly be outperformed by actual models, but there is no guarantee that models de facto exist

at those bounds. The upper bounds, thus, constrain the interval of threshold settings within

which optimal actual models must be searched.

ConCovOpt is a tool, not for blindly maximizing model fit, but for systematically explor-

ing the space of viable models with optimal fit. Sometimes, optimally fitting models will

turn out to be the best models overall, while sometimes optimizing consistency and coverage

is only possible at the price of overfitting or of compromising on robustness or compliance

with background theories or case knowledge. Choosing the best model(s) among all viable

models, which may be numerous (Baumgartner and Thiem 2017), is a delicate task that re-

quires balancing various criteria. Consistency and coverage are only two of those criteria.

But, independently of whether the analyst wants to anchor that choice in the data only or ad-

ditionally draw on external sources of information, making an informed choice presupposes

that the whole model space is brought to the analyst’s attention. The purpose of ConCovOpt

is to contribute to that objective.

The article is organized as follows. Section 2 reviews some conceptual preliminaries. In

section 3, ConCovOpt is presented using a simple crisp-set data example. Section 4 applies

it to large-N data. DNFbuild is introduced in section 5 on the basis of multi-value data;

and a fuzzy-set application is discussed in section 6. Finally, section 7 puts ConCovOpt

into proper methodological perspective. We implemented ConCovOpt and DNFbuild as R

functions, which are extensively used in the R script that is available in the supplementary
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material and that allows for replicating all calculations of this paper.

2 Conceptual preliminaries

We begin by introducing some conceptual and notational preliminaries of our ensuing dis-

cussion. As indicated above, CCMs study Boolean dependence relations between factors

taking on specific values. Factors represent categorical properties that partition sets of units

of observation (cases) either into two sets, in case of binary properties, or into more than two

(but finitely many) sets, in case of multi-value properties. Factors representing binary prop-

erties can be crisp-set (cs) or fuzzy-set ( f s); the former typically take on 0 and 1 as possible

values, whereas the latter can take on any (continuous) values from the unit interval. Factors

representing multi-value properties are called multi-value (mv) factors; they can take on any

of an open (but finite) number of non-negative integers as possible values. Values of a cs

or f s factor X are often interpreted as membership scores in the set of cases exhibiting the

property represented by X, while the values of an mv factor Y designate the particular way in

which the property represented by Y is exemplified.

As the explicit ‘Factor=value’ notation yields convoluted syntactic expressions with in-

creasing model complexity, we subsequently use—whenever possible—a shorthand notation

that is conventional in Boolean algebra and CCM modeling: membership in a set is ex-

pressed by italicized upper case and non-membership by lower case Roman letters. Hence,

in case of cs and f s factors, we normally write ‘X’ for X=1 and ‘x’ for X=0. In case of mv

factors and within explicit definitions, value assignments are always written out, using the

‘Factor=value’ notation; that is, we write ‘Y=ν’ for factor Y taking the value ν.

CCM models may feature all the standard Boolean operations: negation ¬X (‘not X’),

conjunction X∗Y (‘X and Y’), disjunction X+Y (‘X or Y’), implication X → Y (‘If X, then Y),

and equivalence X ↔ Y (‘X if, and only if, Y’). In case of cs and mv factors, these operations

are given a rendering in classical logic (see e.g. Lemmon 1965 for a canonical introduction).

In case of f s factors, Boolean operations are rendered in fuzzy logic: negation ¬X amounts

to 1−X, conjunction X∗Y to min(X, Y), disjunction X+Y to max(X, Y), an implication X → Y

is taken to express that the membership score in X is smaller or equal to Y (X ≤ Y), and an

equivalence X ↔ Y that the membership scores in X and Y are equal (X = Y).

The implication operator is used to define the notions of sufficiency and necessity, which

are the two dependence relations exploited by CCMs: X is sufficient for Y if, and only if (iff),
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X → Y (‘if X is given, then Y is given’), and X is necessary for Y iff Y → X (‘if Y is given,

then X is given’). CCM models have the form Φ ↔ Y , where Y is an endogenous factor

value and Φ stands for an expression X1
∗ . . . ∗Xi + . . . + Xm

∗ . . . ∗Xn in disjunctive normal

form (DNF) such that all factors in that DNF are different (and logically, conceptually, and

metaphysically independent) from one another and from Y . All in all, thus, CCM models

explain Y in terms of a necessary disjunction of sufficient conditions of Y .

Sufficiency and necessity relations amount to mere association patterns. As such, they

carry no causal connotations whatsoever, and, hence, most of these relations do not reflect

causation. Still, some of them do. Regularity theories of causation (Mackie 1974; Graßhoff

and May 2001; Baumgartner and Falk 2019) are designed to filter out those sufficiency and

necessity relations that do track causation. According to regularity theories, an expression of

the form Φ↔ Y tracks causation only if Φ is redundancy-free, meaning that no conjuncts or

disjuncts can be removed fromΦwithout violating the truth ofΦ↔ Y . QCA and CNA differ

in regard to how rigorously Φ needs to be freed of redundancies before it is amenable to a

causal interpretation. In QCA, complete redundancy elimination as implemented in so-called

parsimonious models is not mandatory—partial redundancy elimination as in intermediate

or conservative models may suffice as well. By contrast, CNA automatically eliminates all

redundancies. These differences are bracketed in the following.

Since CCM-processed data δ tend to feature various deficiencies (e.g. fragmentation,

noise, etc.), expressions of type Φ ↔ Y that adhere to the strict standards of the equivalence

operation (‘↔’) often cannot be inferred from δ. To relax these standards, that is, to approx-

imate strict sufficiency and necessity relations, Ragin (2006) introduced the consistency and

coverage measures into the QCA protocol, which have subsequently also been imported into

CNA (Baumgartner and Ambühl 2020). As the implication operator is defined differently

in classical and in fuzzy logic, the two measures are defined differently for crisp-set and

multi-value data, which both have a classical footing, and for fuzzy-set data. Cs-consistency

(concs) and cs-coverage (covcs) of X → Y are defined as follows, where ‘| . . . |δ’ represents

the cardinality of the set of cases instantiating the enclosed expression in the data δ:

concs(X → Y) =
|X∗Y |δ

|X|δ
covcs(X → Y) =

|X∗Y |δ

|Y |δ
(1)

Fs-consistency (con f s) and fs-coverage (cov f s) of X → Y are defined as follows, where n is
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the number of cases in δ:

con f s(X → Y) =

∑n
i=1 min(Xi, Yi)
∑n

i=1 Xi

cov f s(X → Y) =

∑n
i=1 min(Xi, Yi)
∑n

i=1 Yi

(2)

Whenever the values of X and Y are restricted to 1 and 0 in the crisp-set measures, concs

and covcs coincide with con f s and cov f s, but for binary factors with values other than 1 and

0 and for multi-value factors that does not hold. Nonetheless, we will in the following not

explicitly distinguish between the cs and f s measures because our discussion will make it

sufficiently clear which of them is at issue.

What counts as acceptable scores on these measures is defined in threshold settings cho-

sen by the analyst prior to the application of QCA or CNA. While QCA only accepts a con-

sistency threshold, CNA requires both a consistency and a coverage threshold. Moreover, the

implementation of these thresholds differs in important ways in the two methods. In QCA,

a consistency threshold is imposed only on conjunctions of all exogenous factors (so-called

minterms) in the course of the generation of truth tables, which are intermediate calculative

devices for QCA. The final models issued may or may not meet the chosen threshold. In

CNA, thresholds for both consistency and coverage are used as authoritative model building

constraints. The thresholds define what counts as sufficient and necessary conditions, to the

effect that models not meeting them cannot be built.

Despite these differences, in both QCA and CNA models with higher consistency and

coverage are preferred over models with lower scores on these measures, provided they fare

equally well in other respects (e.g. robustness). The following section introduces our proce-

dure, ConCovOpt, calculating consistency and coverage optima.

3 The optimization procedure

The goal of ConCovOpt is to identify both optimal and maximal consistency and coverage

scores—con-cov optima and con-cov maxima, for short—, the distinction being that an op-

timum optimizes at least one of consistency and coverage, whereas a maximum optimizes

their aggregate. The procedure is given configurational data δ and a set of outcomes O in

δ as input. By suitably synthesizing δ for the modeling of every Y ∈ O, ConCovOpt first

identifies output values for Boolean functions, so-called rep-assignments, which reproduce

the behavior of Y as closely as possible, and, by calculating consistency and coverage scores
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P O A C

E75 1 0 1 0

E87 1 1 0 1

P81 1 0 0 0

P90 1 0 0 0

N77 1 1 1 0

E80 0 1 0 0

E92 0 1 0 0

P75 0 0 1 1

P87 0 0 0 1

P92 0 0 0 1

N80 0 0 0 0

(a)

conf. P O A C n exo-groups ϕ(C=1) ϕ1 ϕ2

σ1 1 0 1 0 1 {σ1} 0 0 0

σ2 1 1 0 1 1 {σ2} 1 1 1

σ3 1 0 0 0 2 {σ3} 0 0 0

σ4 1 1 1 0 1 {σ4} 0 0 0

σ5 0 1 0 0 2 {σ5} 0 0 0

σ6 0 0 1 1 1 {σ6} 1 1 1

σ7 0 0 0 1 2
{σ7,σ8} 0, 1 0 1

σ8 0 0 0 0 1

(b)

Table 1: Subtable (a) is the data matrix for the United States from Giugni and Yamasaki

(2009, 476) with outcome C. Subtable (b) is a configuration table with labels in column

‘conf.’, case frequencies in ‘n’, imperfect pairs with gray shading, as well as added exo-

groups, rep-list ϕ(C=1), and rep-assignments ϕ1 and ϕ2.

for these rep-assignments, it then infers all con-cov optima and maxima that CCM models

of Y can possibly reach.

We introduce the procedure using the very simple cs data example in Table 1a drawn

from Giugni and Yamasaki (2009, 476), who investigate the policy impact of different social

movements between 1975 and 1995. The exogenous factors are high protest activity (P),

public opinion favorable to the movement (O), and powerful institutional allies (A), with

values 0 and 1 representing ‘no’ and ‘yes’ for all factors. The endogenous factor C takes

the value 1 whenever a movement manages to significantly change a country’s policy, and 0

otherwise. The authors analyze the data for various western countries separately; Table 1a

features the data for the United States.

We begin by searching for con-cov optima for outcome C (i.e. C=1) in Table 1a. The

notion of a con-cov optimum shall be defined as follows:

Con-cov optimum. An ordered pair 〈con, cov〉 of consistency and coverage scores is a con-

cov optimum for outcome Y=ν in data δ iff, prior to applying a CCM, it can be excluded that

a model of Y=ν inferred from δ scores better on one element of the pair and at least as well

on the other, whereas it cannot be excluded that a model of Y=ν reaches 〈con, cov〉.

If models of Y (i.e. Y=1) inferred from data δ can be modeled with perfect consistency and
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coverage, 〈1, 1〉 is the only con-cov-optimum for Y in δ. Outcome C in Table 1a, however,

does not have a con-cov optimum of 〈1, 1〉. The reason is that the cases P87, P92, N80 feature

the same configuration of the exogenous factors—the configuration p∗o∗a—while C is given

in P87 and P92 and c is given in N80. The configurations p∗o∗a∗C and p∗o∗a∗c constitute

imperfect configurations, or what we will call an imperfect pair.1

Imperfect pair. An imperfect pair for Y=ν in data δ is a pair of configurations {σi, σ j} in δ

such that Y=ν is instantiated in one element of the pair and Y,ν in the other, while all other

factors in δ take constant values in both σi and σ j.

In cs (and mv) data δ, there is a tight logical connection between imperfect pairs for an

outcome Y and 〈1, 1〉 being the con-cov optimum for Y in δ: Y has a con-cov optimum of

〈1, 1〉 in δ iff there does not exist an imperfect pair for Y in δ. The reason is that a model

with perfect consistency and coverage expresses Y as a strict Boolean function of the other

factors in δ, and such a function issues exactly one output for every input. If there does not

exist an imperfect pair for Y , every input (i.e. every configuration of factors other than Y)

can be straightforwardly mapped either onto Y or onto y. But if there exists an imperfect

pair, there exists an input to which no determinate output can be assigned, meaning Y cannot

be expressed as a strict Boolean function of the other factors in δ. On average, the more

imperfect pairs Y has in δ the lower the con-cov optima for Y in δ.2

The existence of imperfect pairs indicates that there are varying causes of Y in the uncon-

trolled causal background. The variation of Y in an imperfect pair must have some cause or

other; but that cause cannot be among the other factors in δ because they are constant in the

pair. Since varying latent causes are a source of confounding, it is standardly recommended

to try to resolve imperfect pairs prior to a CCM analysis; and there are various approaches on

offer for how to do this (e.g. Rihoux and De Meur 2009). Of course, as suppressing the vari-

ation of latent causes, especially in observational studies, is very difficult, these approaches

may be incapable of improving the data quality. For the purposes of this paper, we will hence

assume that the quality of all our example data has been improved as far as possible, meaning

that the remaining imperfect pairs cannot be resolved.

1In the QCA literature, such configurations are often labelled contradictory (e.g. Rihoux and De Meur

2009, 46-49). We find this terminology misleading because a contradiction cannot possibly be realized. But,

as Table 1a vividly demonstrates, it is very well possible for p∗o∗a to be realized in combination with both C

and c.
2Not only the amount of imperfect pairs affects the con-cov optima but also the number of cases instanti-

ating the elements of imperfect pairs.
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A first step towards determining con-cov optima for an outcome Y is to identify imper-

fect pairs for Y in δ. To do this in a methodical manner, we re-organize the data such that

the instantiated configurations are rendered more transparent by synthesizing all cases in δ

instantiating the same configuration in a single row of what we call a configuration table. A

configuration table CT of data δmerges multiple rows of δ in which all factors have identical

values into one row, such that each row of CT corresponds to one determinate configuration

of the factors in δ.3 The configurations in CT are labeled and the number of cases instan-

tiating each configuration is stored in a frequency column. The first three (line-separated)

columns of Table 1b amount to a configuration table of the data in Table 1a.

A configuration table then allows for splitting the configurations into groups in which all

factors other than a scrutinized outcome Y , that is, all factors exogenous with respect to Y ,

take constant values. We shall speak of exo-groups, for short.

Exo-group. An exo-group of an outcome Y=ν in a configuration table CT is a group of

configurations in CT with constant values in all factors in CT other than Y .

The imperfect pairs for Y (i.e. Y=1) in data δ can then be directly read off the list of Y’s exo-

groups: exo-groups with more than one element such that Y is instantiated in one element

and not instantiated in another element correspond to imperfect pairs. To illustrate with

our example, the exo-groups of C are listed in the fourth (line-separated) column of Table

1b. While σ1 is the only configuration in Table 1b featuring P∗o∗A, meaning that {σ1} is a

singleton exo-group of C, there are two configurations featuring p∗o∗a, viz. σ7 and σ8, which

constitute an exo-group with two elements {σ7, σ8}. As C is instantiated in one element of

that group and c in the other, {σ7, σ8} amounts to an imperfect pair for C; and as C has no

other exo-groups with more than one element, it is C’s only imperfect pair.

In order for a CCM model, which, to recall, has the form Φ ↔ Y , to have highest possi-

ble consistency and coverage, its redundancy-free DNF Φ must reproduce the instantiation

behavior of the outcome Y as closely as possible. The notion of reproducing the behavior

of an outcome as closely as possible will be of crucial importance for ConCovOpt. It must

be understood somewhat differently for cs and mv data, on the one hand, and f s data, on

3Note that a configuration table is not a QCA truth table. A configuration table merely synthesizes cases

to configurations and shows the actual value distribution of the outcome, whereas a truth table replaces the

outcome distribution by a function column indicating for each configuration (minterm) whether it is sufficient

for the outcome according to a chosen consistency threshold. As ConCovOpt does not aim to optimize the fit

scores relative to some chosen consistency threshold but to find absolute con-cov optima it has to operate on

the actual outcome distribution.
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the other. In case of cs and mv data, we say that Φ reproduces the behavior of an outcome

as closely as possible iff Φ returns the value 1 for every exo-group in which the outcome is

constantly instantiated, 0 for every exo-group in which it is constantly non-instantiated, and

either 0 or 1 for every exo-group with a varying instantiation of the outcome. Applied to

our example, this means that a Φ—whichever concrete DNF this may be—reproduces the

behavior of C as closely as possible iff Φ returns 1 for exo-groups {σ2}, {σ6}; 0 for {σ1}, {σ3},

{σ4}, {σ5}; and either 0 or 1 for {σ7, σ8}. Taken together, these value assignments yield what

we will call the rep-list (reproduction list) ϕ(C=1) for outcome C in Table 1b.

Rep-list. A rep-list ϕ(Y =ν) for an outcome Y=ν assigns all the values reproducing the be-

havior of Y=ν as closely as possible to every exo-group of Y=ν.

Moreover, to an assignment that returns a value from a rep-list for every exo-group we will

refer as a rep-assignment (reproduction assignment).

Rep-assignment. A rep-assignment ϕ for an outcome Y=ν assigns exactly one value from a

rep-list ϕ(Y =ν) to every exo-group of Y=ν.

Whatever concrete factor values CCMs may ultimately incorporate in DNFs accounting

for outcome Y , it is clear—prior to applications of CCMs—that a DNF not returning a rep-

assignment does not reach a con-cov optimum for Y . At the same time, as will be shown in

section 4, some rep-assignments yield non-optimal consistency or coverage scores. That is,

returning a rep-assignment for Y is necessary but not sufficient for a DNF to reach a con-cov

optimum for Y . In order to identify those rep-assignments that actually yield con-cov optima,

all possible rep-assignments must be built from ϕ(Y =ν) and the consistency and coverage

scores they induce tested for optimality.

The number of rep-assignments that can be built from a rep-list ϕ(Y =ν) is equal to

the number of combinatorially possible value distributions drawn from ϕ(Y =ν), that is, to
∏n

i=1 |ϕ(Y =ν)i|, where n is the number of exo-groups and |ϕ(Y =ν)i| the cardinality of the

set of possible values assigned to exo-group i. In our example, the complete set of rep-

assignments is easily built, as there is only one exo-group with more than one value in the

rep-list ϕ(C=1). Hence, outcome C has a total of two rep-assignments, ϕ1 and ϕ2, which

are featured in the last two columns of Table 1b. ϕ1 and ϕ2 coincide except for the fact

that they contain the values 0 and 1, respectively, for exo-group {σ7, σ8}. ϕ1 induces perfect

consistency but does not cover the instance of C in σ7, whereas ϕ2 covers the instance of C
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in σ7 but violates perfect consistency in σ8.

It only remains to be determined which of all rep-assignments actually reach con-cov

optima. To this end, consistency and coverage scores are calculated for all rep-assignments.

In case of cs and mv data, this can be done by plugging the values of a rep-assignment ϕi

and the corresponding instantiation behavior of outcome Y=ν into the definitions concs and

covcs in Expression (1). In our example, this means that columns ‘ϕ1’ and ‘ϕ2’ of Table

1b yield the X-values of concs and covcs, column ‘C’ the Y-values, and column ‘n’ the case

frequencies. We get the following consistency and coverage scores:

ϕ1 : con = 1 ; cov = 0.5 (3)

ϕ2 : con = 0.8 ; cov = 1 (4)

Due to the imperfect pair in exo-group {σ7, σ8}, it is impossible, in principle, for a CCM

model of C inferred from the data in Table 1a to score better on consistency and coverage.

ϕ1 outperforms ϕ2 in consistency and ϕ2 outperforms ϕ1 in coverage. As neither of the two

scores better than the other on one measure and at least as well on the other, they are both

con-cov optima. ϕ1 optimizes consistency, ϕ2 optimizes coverage. At the same time, ϕ2

clearly outperforms ϕ1 in the aggregate of consistency and coverage, which we take to be

the product of consistency and coverage (i.e. the con-cov product). That is, ϕ2 has the better

overall model fit; it reaches a con-cov maximum:

Con-cov maximum: An ordered pair 〈con, cov〉 of consistency and coverage scores is a

con-cov maximum for outcome Y=ν in data δ iff 〈con, cov〉 is a con-cov optimum for

Y=ν in δ with the highest aggregate, i.e. product, of consistency and coverage.

Of course, the product of consistency and coverage is only one option among many to

aggregate consistency and coverage. Assessing the overall model fit based on the con-cov

product amounts to giving equal weights to consistency and coverage, which, while standard

in CNA, may not be endorsed by all QCA methodologists (who tend to have a preference

for consistency). We do not want to take a stance on that issue here, but, instead, invite a

reader who wants to assess the overall model fit by giving unequal weights to consistency or

coverage to view the simple con-cov product in the above definition as a placeholder for any

preferred function aggregating consistency and coverage. That is, a con-cov maximum might

alternatively be defined as a con-cov optimum with maximal score on con0.75 · cov0.25, or on
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Procedure 1 (ConCovOpt) consistency and coverage optimization

Input: configurational data δ with a set of outcomes O in δ.

Output: all con-cov optima and maxima for all outcomes in O.

(1) Aggregate δ in a configuration table CT.

(2) For every outcome Y=ν in O, split the configurations in CT into exo-groups of Y=ν.

(3) Build the rep-list ϕ(Y =ν).

(4) Build all rep-assignments ϕ1 to ϕm from ϕ(Y =ν).

(5) Calculate the consistency and coverage scores of ϕ1 to ϕm.

(6) Eliminate all rep-assignments with scores that do not reach a con-cov optimum.

⇒ The scores of the remaining rep-assignments correspond to all con-cov optima

for Y=ν in δ, the optima with highest aggregate are the con-cov maxima.

(0.25·con) + (0.75·cov), or on min(con, cov), etc.4 While all of these alternative definitions

identify ϕ2 as con-cov maximum for outcome C, they may select different con-cov maxima

in other examples. Still, to avoid unnecessary complications, we shall subsequently only

work with the con-cov product as our aggregation function of choice.

In sum, without having applied CCMs to Guigni and Yamasaki’s (2009) data, we have

identified optimal and maximal consistency and coverage scores for them. Before we search

for actual CCM models for our example, let us assemble the different procedural steps. To

this end, one generalization is still needed. For simplicity, all data analyzed in this paper

comprise a single outcome only, but, of course, configurational data may feature multiple

outcomes. If that is the case, exo-groups, rep-lists, and rep-assignments must be formed

and consistency and coverage scores calculated for each outcome separately. For generality,

we thus let the input of ConCovOpt be data δ along with a set of outcomes O in δ. If no

prior knowledge is available as to which values of which factors in δ are possible outcomes,

ConCovOpt can simply be run by setting O equal to all values of all factors in δ. ConCovOpt

is presented in Procedure 1.

Let us now apply CCMs to our example data in order to find actual models returning

ϕ1 and ϕ2. At a consistency threshold anywhere between 1 and 0.67, QCA produces the

following parsimonious (QCA-PS) and conservative models (QCA-CS),5 the latter of which

4Accordingly, our R implementation of ConCovOpt in the supplementary material is accompanied by a

function selectMax() that accepts any function aggregating consistency and coverage as criterion to select

con-cov maxima.
5The relevant replication code is available as an R script in the supplementary material.
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is also the model published by Giugni and Yamasaki (2009, 479):

QCA-PS: p∗A + P∗O∗a ↔ C con = 1 ; cov = 0.5 (5)

QCA-CS: p∗o∗A + P∗O∗a ↔ C con = 1 ; cov = 0.5 (6)

In both (5) and (6), not only the solution consistency but also the consistencies of all sufficient

conditions (i.e. disjuncts) are 1. Our previous calculations attest that the QCA models reach

a con-cov optimum, as they return rep-assignment ϕ1. At the same time, we now see that

(5) and (6) do not reach a con-cov maximum. Rep-assignment ϕ2 shows that it is possible to

significantly improve on the overall model fit. But at a conventional consistency threshold

of 0.75, standard QCA does not find a better scoring model—for two main reasons. On the

one hand, QCA builds models from the top down by first searching for complete minterms

satisfying a chosen consistency threshold and then eliminating redundancies. The minterm

p∗o∗a of the exo-group {σ7, σ8}, however, only reaches a consistency of 0.667 and is therefore

not further considered by QCA (in QCA jargon: it is coded ‘0’)—despite the fact that, as we

shall see below, a proper part of that minterm indeed scores 0.75 on consistency. On the other

hand, standard QCA does not accept a coverage threshold and, hence, cannot be ‘asked’ to

build models with specific target scores on coverage.

CNA, by contrast, accepts separate thresholds for consistency of sufficient conditions and

of whole models as well as for coverage of whole models. It can thus be ‘asked’ to build

models at any target scores. Moreover, it builds models from the bottom up by first testing

single factor values for compliance with chosen thresholds and by then gradually adding

further factor values until threshold compliance is established.6 Dusa (2018) has recently

presented a promising new algorithm for QCA called CCubes that also builds models from

the bottom up and accepts the same types of thresholds as CNA.7 At a threshold setting of

〈1, 0.5〉, CNA and CCubes return the same model as QCA-PS, but at 〈0.75, 1〉 they find the

following model realizing ϕ2:

CNA / CCubes: p∗o + P∗O∗a ↔ C con = 0.8 ; cov = 1 (7)

6For more on the difference between a top-down and bottom-up search see Baumgartner and Ambühl

(2020).
7Dusa (2018) describes CCubes as a minimization algorithm that is optimized for speed but produces the

same models as traditional QCA algorithms (e.g. Quine-McCluskey optimization). In fact, however, CCubes

accepts much more fine-grained tuning parameters and its bottom-up approach may generate models that differ

from standard QCA models, as the examples in this paper show. CCubes is not equivalent to standard QCA

algorithms,
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This is not the place to select among the different model candidates we have now re-

covered for Guigni and Yamasaki’s (2009) data, nor to substantively interpret them. What

matters for our purposes is that computing con-cov optima and maxima by means of Con-

CovOpt prior to actually conducting CCM analyses has (at least) three important payoffs.

First, it allows us to determine how close actually obtained models come to optimal and

maximal fit. Second, it renders transparent whether the obtained models exhaust the space

of con-cov optima or whether further models should be searched at different thresholds.

Third, without having to try out a whole range of threshold settings, CCMs can be run by

directly constraining them towards optimal thresholds.

4 Large-N crisp-set data

The data in Table 1a are very simple and, although the resulting optimal models differ sig-

nificantly in overall fit, they have a considerable overlap in causal ascriptions, thus inducing

only marginally different causal conclusions. To show that optimizing consistency and cov-

erage can also make a substantive difference in causal conclusions, we now turn to a more

intricate, large-N data example. Britt et al. (2000) investigate the determinants leading to the

parental decision to terminate a pregnancy after a prenatal diagnosis of trisomy 21. Four ex-

ogenous factors are examined: existing children (C; 0 := ‘none’, 1 := ‘1 or more’), maternal

age in years (M; 0 := ‘37 and under’, 1 := ‘38 and above’), prior voluntary abortions (A; 0

:= ‘none’, 1 := ‘1 or more’), and gestational age in weeks (G; 0 := ‘16 and under’, 1 := ‘17

and over’). The endogenous factor is termination (T ; 0 := ‘continue’, 1 := ‘terminate’). The

cases are 142 pregnant women receiving a trisomy 21 diagnosis at Wayne State University

Clinic from September 1989 through October 1998. The complete data can be consulted in

our replication script, the configuration table resulting from that data is in Table 2.

As is frequently the case in large-N data, there are numerous imperfect pairs, highlighted

with gray shading. Instead of first calculating con-cov optima and maxima and only after-

wards looking at concrete models, we proceed in reverse order for this example. We begin by

presenting the model offered by Britt et al. (2000, 412). They choose a consistency threshold

of 0.875. At this threshold, QCA builds two parsimonious models (only the second of which

is mentioned by the authors):8

8The data analyzed by Britt et al. (2000) do not feature limited diversity, which is why all QCA solution

types coincide.
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conf. C M A G T n exo-groups ϕ(T =1) ϕpub ϕmax

σ1 1 1 0 0 1 27
{σ1,σ2} 0, 1 1 1

σ2 1 1 0 0 0 1

σ3 1 1 1 0 1 7
{σ3,σ4} 0, 1 1 1

σ4 1 1 1 0 0 1

σ5 1 0 0 0 1 11 {σ5} 1 1 1

σ6 1 0 1 1 1 9 {σ6} 1 1 1

σ7 0 0 1 0 1 1 {σ7} 1 1 1

σ8 1 1 1 1 1 3
{σ8,σ9} 0, 1 0 1

σ9 1 1 1 1 0 1

σ10 0 1 0 1 1 1 {σ10} 1 1 1

σ11 0 0 0 1 1 8 {σ11} 1 1 1

σ12 1 0 0 1 1 19
{σ12,σ13} 0, 1 0 1

σ13 1 0 0 1 0 6

σ14 1 0 1 0 1 7 {σ14} 1 1 1

σ15 1 1 0 1 1 11
{σ15,σ16} 0, 1 0 1

σ16 1 1 0 1 0 3

σ17 0 0 0 0 1 4
{σ17,σ18} 0, 1 0 1

σ18 0 0 0 0 0 2

σ19 0 1 1 1 1 1 {σ19} 1 1 1

σ20 0 1 1 0 1 1
{σ20,σ21} 0, 1 0 1

σ21 0 1 1 0 0 1

σ22 0 0 1 1 1 6 {σ22} 1 1 1

σ23 0 1 0 0 1 11 {σ23} 1 1 1

Table 2: Configuration table for the data in Britt et al. (2000, 412) with (highlighted) imper-

fect pairs, exo-groups, rep-list ϕ(T =1), and the rep-assignments ϕpub and ϕmax.

QCA: c∗G + C∗g + m∗A + c∗M∗a ↔ T con = 0.98 ; cov = 0.70 (8)

c∗G + C∗g + m∗A + M∗a∗g ↔ T con = 0.98 ; cov = 0.70 (9)

A handful of QCA re-runs with only slightly varied consistency thresholds shows that

the results are highly volatile, yielding many different models with different overall fit. Iden-

tifying a con-cov maximum for these data calls for a systematic approach. We thus apply

ConCovOpt with O = {T=1}. The result of step (1) is the configuration table in Table 2. Step

(2) yields 9 singleton exo-groups entailing determinate values for the rep-list in step (3). In

all 7 non-singleton exo-groups the outcome T varies, meaning that DNFs reproducing the

behavior of T as closely as possible can return either 0 or 1 for those groups. In total, the

resulting rep-list ϕ(T =1) induces 27 = 128 rep-assignments in step (4). In step (5), consis-
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Figure 1: Plot (a) shows the 16 con-cov optima for outcome T in the data of Britt et al.

(2000), plot (b) the con-cov products of each optimum. N is the con-cov maximum, � the

published model.

tency and coverage scores are calculated for all of them and those with non-optimal scores

eliminated in step (6). 16 con-cov optima remain. They are plotted Figure in 1a.

In light of these results, we can now say that the published model (9), which scores

〈0.98, 0.70〉, indeed reaches a con-cov optimum (ϕ3; � in Figure 1). However, with its con-

cov product of 0.69 it is quite far away from a con-cov maximum. The con-cov products of

all 16 optima are plotted in Figure 1b. The con-cov maximum for outcome T is ϕ16 〈0.89, 1〉

(N). For transparency, we add the rep-assignment ϕpub (i.e. ϕ3) realized by the published

model and the assignment ϕmax (i.e. ϕ16) yielding the con-cov maximum to Table 2.

The value distribution of ϕmax is striking: it assigns 1 to every exo-group, resulting in a

(vacuous) tautology. In other words, a best fitting model for the data of Britt et al. (2000)

entails that pregnancy is terminated in case of a trisomy 21 diagnosis whatever the values

of the exogenous factors, that is, independently of the pregnant woman’s existing children,

prior abortions, age, and gestational age. To render this more concrete, let us now search for

actual models at 〈0.89, 1〉. While standard QCA algorithms do not find a model reaching the

con-cov maximum, CNA and CCubes have no problem finding such a model. At a threshold

setting of 〈0.89, 1〉, the following tautologous model is returned:

CNA / CCubes: M + m ↔ T con = 0.89 ; cov = 1 (10)
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Of course, any other tautologous model, as C + c ↔ T or A + a ↔ T , reaches the same

fit scores, but (10) is the only model such that the two disjuncts M and m individually reach

the consistency threshold of 0.89 as well—which is why it is the only model issued by CNA

and CCubes. The overall fit of (10) is good by all CCM standards, and (10) also meets the

consistency threshold used by Britt et al. (2000). It is the best fitting model for their data,

and, for principled reasons, its fit scores cannot be outperformed. But of course, it is not a

causally interpretable model. Causes are difference-makers of their effects, yet a tautology

does not make a difference to anything.

This finding casts doubts on all causal conclusions Britt et al. (2000) have drawn from

their data. 127 of all 141 women receiving a trisomy 21 diagnosis in their sample choose to

terminate, making termination the canonical response to the diagnosis. No non-tautologous

function of the exogenous factors can account for the outcome better than the tautologous

model that entails termination no matter what. The data contain too little variation on the

outcome T to conclude anything about its causes; in particular, there is no evidence that T is

caused by any of the factors C, M, A, or G. A causal interpretation of the published model (9)

is unwarranted by the data. This shows that a systematic search for con-cov maxima (prior

to a CCM analysis) may have implications that go way beyond minor model adjustments or

improvements. The optimization of consistency and coverage scores rendered possible by

ConCovOpt may thoroughly change the conclusions drawn from a study.

5 Multi-value data

ConCovOpt is straightforwardly applicable to multi-value data. Although the factors in mv

data can take more than two values, models for an mv outcome Y=ν have the same logical

form as cs models: they account for Y=ν in terms of redundancy-free DNFs, which, irre-

spective of whether they feature cs or mv factors, are true or false, that is, only return 1 or 0.

Hence, for an optimal mv DNF to reproduce the instantiation behavior of an outcome Y=ν as

closely as possible the exact same conditions must be satisfied as in the cs case (see p. 10).

It follows that rep-lists and rep-assignments can be built and evaluated for consistency and

coverage in exactly the same way for mv data as for cs data.

To illustrate, we apply ConCovOpt to the mv data of Verweij and Gerrits (2015), who

investigate the impact of different management strategies in response to unplanned events

occurring during the implementation of a large infrastructure project in Maastricht. Their
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data comprise 18 unplanned events (between 2009 and 2011) measuring the following ex-

ogenous factors: nature of the event (E; 0 := ‘physical/remote’, 1 := ‘social/project/public’),

nature of the management response (M; 0 := ‘internal’, 1 := ‘external’), nature of the inter-

action between public and private managers (I; 0 := ‘autonomous public’, 1 := ‘autonomous

private’, 2 := ‘cooperation’). The endogenous factor is the satisfactoriness of the manage-

ment response (S ). To emphasize the data’s mv nature, we replace the original values of S

(i.e. 0 and 1) by two (arbitrarily chosen) different ones; that is, we will say that S takes the

value 3 if satisfactoriness is high and the value 2 if it is not high.

The input to ConCovOpt, hence, is Verweij and Gerrits’ complete data with O = {S =3}

(see the replication script). In step (1), ConCovOpt synthesizes that data in the configuration

table contained in Table 3. As there is only one outcome, step (2) forms one set of exo-

groups, which are listed in column 4. There are two non-singleton exo-groups, {σ3,σ4} and

{σ7,σ8}, each inducing two possible values in the rep-list in step (3). Step (4) generates

22 = 4 rep-assignments ϕ1 to ϕ4. For transparency, we list them all in Table 3. In step (5), the

value distributions of ϕ1 to ϕ4 and the instantiation behavior of outcome S =3 are plugged into

concs and covcs. Step (6) checks the consistency and coverage scores for optimality, which

check is positive for all scores. Overall, ConCovOpt identifies the following four con-cov

optima for outcome S =3, the last of which, ϕ4, is a con-cov maximum:

ϕ1 : con = 1 ; cov = 0.44 (11)

ϕ2 : con = 0.86 ; cov = 0.67 (12)

ϕ3 : con = 0.78 ; cov = 0.78 (13)

ϕ4 : con = 0.75 ; cov = 1 (14)

Verweij and Gerrits (2015, 21) present a conservative solution, (15), that scores 〈1, 0.44〉

and, hence, realizes the optimum ϕ1. Independently of where in the interval [1, 0.67] the

consistency threshold is placed, QCA finds two parsimonious solutions, (16) and (17), which

likewise realize ϕ1.

QCA-CS: M=0 ∗ I=0 + E=0 ∗M=0 ∗ I=2 + E=1 ∗M=1 ∗ I=1 ↔ S =3 (15)

QCA-PS: M=0 ∗ I=0 + E=0 ∗ I=2 + M=1 ∗ I=1 ↔ S =3 (16)

M=0 ∗ I=0 + M=0 ∗ I=2 + M=1 ∗ I=1 ↔ S =3 (17)
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conf. E M I S n exo-groups ϕ(S=3) ϕ1 ϕ2 ϕ3 ϕ4

σ1 0 0 2 3 1 {σ1} 1 1 1 1 1

σ2 1 0 1 2 2 {σ2} 0 0 0 0 0

σ3 1 1 0 2 2
{σ3,σ4} 0, 1 0 0 1 1

σ4 1 1 0 3 3

σ5 1 0 0 3 1 {σ5} 1 1 1 1 1

σ6 1 1 1 3 1 {σ6} 1 1 1 1 1

σ7 1 1 2 2 1
{σ7,σ8} 0, 1 0 1 0 1

σ8 1 1 2 3 2

σ9 0 0 1 2 4 {σ9} 0 0 0 0 0

σ10 0 0 0 3 1 {σ10} 1 1 1 1 1

Table 3: Configuration table for the data in Verweij and Gerrits (2015), with re-coded factor

S , exo-groups, rep-list, and all resulting rep-assignments.

That is, in the range of conventional threshold settings QCA only finds models realizing one

of four con-cov optima. Instead of now applying CNA and CCubes, we next introduce a

procedure for building CCM models realizing any con-cov optimum for cs and mv data.

A con-cov optimum is realized by a DNF that outputs either 1 or 0 for every exo-group.

Any two DNFs that return the same output for all exo-groups have the same consistency and

coverage. For convenience, let us call the set of exo-groups to which a rep-assignment ϕi

assigns the value 1 the positive group of ϕi. One particularly interesting DNF returning ϕi

then is what we label ϕi’s canonical DNF—in reference to canonical normal forms of logical

expressions (Lemmon 1965, 198).

Canonical DNF. The canonical DNF returning a rep-assignment ϕi for outcome Y=ν is the

disjunction of the configurations of all factors exogenous to Y in ϕi’s positive group.

Just as any logical expression is guaranteed to have a unique canonical normal form, so

is every rep-assignment guaranteed to have exactly one canonical DNF, which moreover is

easily built. For example, disjunctively concatenating the configurations of factors E, M and

I in ϕ4’s positive group in Table 3 yields the canonical DNF returning ϕ4; it is a DNF that

scores 〈0.75, 1〉 in accounting for S =3:

E=0 ∗M=0 ∗ I=2 + E=1 ∗M=1 ∗ I=0 + E=1 ∗M=0 ∗ I=0 +

E=1 ∗M=1 ∗ I=1 + E=1 ∗M=1 ∗ I=2 + E=0 ∗M=0 ∗ I=0
(18)

In the same way, the canonical DNFs of the other con-cov optima for outcome S =3 can be

19



construed. For example, as the exo-group {σ7, σ8} is not in ϕ3’s positive group, removing

the configuration of the exogenous factors in {σ7, σ8}, viz. E=1 ∗M=1 ∗ I=2, from (18) is all it

takes to build the canonical DNF returning ϕ3.

Of course, as canonical DNFs comprise all configurations of all exogenous factors in an

optimum’s positive group, they tend not to be redundancy-free, and consequently, not to be

causally interpretable. For instance, if we remove E=0 from the first and the last disjuncts

in (18), we are still left with a DNF with the same output for all exo-groups in Table 3, that

is, a DNF returning ϕ4. The same holds if we continue to eliminate E=1 from all disjuncts.

By contrast, if I=2 is eliminated from the first disjunct of (18), we are left with a DNF that

scores 〈0.56, 1〉 in accounting for S =3 and, thus, no longer returns ϕ4. The reason is that

a DNF featuring E=0 ∗M=0 as a separate disjunct (instead of E=0 ∗M=0 ∗ I=2) outputs 1 for

exo-group {σ9}, whereas ϕ4 assigns 0 to that group. In sum, while some factor values can be

removed from (18) such that the remaining DNF still returns ϕ4, others are indispensable for

returning ϕ4.

These considerations suggest that (18) can be turned into a redundancy-free DNF return-

ing ϕ4 by systematically removing factor values and checking whether the remainder still

outputs the same as (18) for all exo-groups. All factor values for which this check is posi-

tive are redundant; all factor values for which the check is negative are indispensable (non-

redundant). If all redundancies are removed from (18), we are left with this redundancy-free

DNF: I=2 + I=0 + M=1. Accounting for S =3 on its basis yields the following model, which

reaches the con-cov maximum for Verweij and Gerrits’ data:

I=2 + I=0 + M=1 ↔ S =3 con = 0.75 ; cov = 1 (19)

(19) has a peculiarity. Although the model as a whole reaches a consistency of 0.75, two

of its component disjuncts do not. M=1 and I=0 are sufficient for S =3 with consistencies of

0.67 and 0.71 only. It follows that in order to find (19) with CNA and CCubes, the consis-

tency threshold must be lowered to 0.66. Whether models some of whose components only

reach a consistency of 0.67 should be considered acceptable is a question that requires further

discussion, which, however, goes beyond the purposes of this paper. If (19) is considered

unacceptable, our previous analysis has shown that there are other con-cov optima on offer

for Verweij and Gerrits’ data that score better than the published model. For example, by

systematically eliminating redundancies from the canonical DNF returning ϕ2 we find the
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redundancy-free DNF in (20), all of whose disjuncts have consistencies of 0.75 or higher,

such that (20) is returned by both CNA and CCubes at that consistency threshold:

I=2 + M=0 ∗ I=0 + M=1 ∗ I=1 ↔ S =3 con = 0.86 ; cov = 0.67 (20)

(20) comes close to the two parsimonious QCA solutions (16) and (17). The only differ-

ence is that I=2 is conjunctively combined with E=0 in (16) and with M=0 in (17), creating

a model ambiguity, whereas I=2 is a stand-alone disjunct in (20), which is non-ambiguous.

Hence, replacing QCA’s parsimonious solutions by redundancy-free DNFs returning ϕ2 or

ϕ4—systematically built via their canonical DNFs—not only increases the con-cov product

from 0.44 to 0.58 and 0.75, respectively, but also resolves a model ambiguity—two clear

advantages of (20) and (19) over (16) and (17).9

We end this section by assembling the steps building DNFs returning rep-assignments in

procedural form, which we label DNFbuild, for short.

Procedure 2 (DNFbuild) build redundancy-free DNFs returning rep-assignments

Input: cs or mv configuration table CT and rep-assignment ϕi for outcome Y=ν in CT

Output: redundancy-free DNF(s) returning ϕi

(1) Build the canonical DNFcano returning ϕi by disjunctively concatenating the configu-

rations of the factors exogenous to Y=ν in ϕi’s positive group.

(2) Eliminate all factor values from DNFcano for which it holds that the result of the elim-

ination, viz. DNFelim, still returns ϕi (i.e. produces the same output as DNFcano for all

exo-groups in CT).

⇒ If no further factor values can be eliminated from DNFelim, it is a redundancy-free DNF

returning ϕi.

In case of cs and mv configuration tables, all ϕi’s have a canonical DNF, which is effi-

ciently built by step (1) of DNFbuild. Step (2), by contrast, involves some intricacies. The

reason is that different orders in which factor values are eliminated from DNFcano may result

in different redundancy-free DNFs. Generating all of these DNFs can be done more or less

efficiently, but the running time of all algorithms that solve this problem grows exponentially

with the number of factors and the number of values these factors can take. In the repli-

9At the same time it is worth noting that (20) and (19) do not contradict (16) and (17); rather, the former

are mere submodels of the latter (Baumgartner and Ambühl 2020).
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cation script, we use an algorithm called ereduce to generate all redundancy-free forms of

DNFcano.10 In the end, what matters for our current purposes is not the concrete implemen-

tation of step (2) but the fact that DNFbuild is guaranteed to find a redundancy-free DNF

Φr f of every con-cov optimum 〈h, k〉. The equivalence Φr f ↔ Y=ν then amounts to a CCM

model accounting for Y=ν with consistency h and coverage k. That is, in case of cs and mv

data, there exists a CCM model for every con-cov optimum.

6 Fuzzy-set data

This section, first, applies ConCovOpt to f s data, and second, shows that there is no guar-

antee that actual CCM models exist for every con-cov optimum in f s data and that calcu-

lating con-cov optima for f s data is more computationally demanding than for cs and mv

data. As background for this discussion, we choose the study by Basurto (2013) who an-

alyzes the autonomy among local institutions for biodiversity conservation in Costa Rica.

The study aims to identify causes of, on the one hand, the emergence of autonomy between

1986 and 1998 and, on the other, the endurance of that autonomy between 1998 and 2006.

Basurto investigates three groups of potentially causally relevant factors: local, national and

international ones. In what follows, we focus on the local influence factors of high local

communal involvement through direct employment (E), high local direct spending (S ), and

co-management with local or regional stakeholders (C), and we concentrate on the outcome

of endurance of high local autonomy (A), with 0 representing ‘no’ and 1 ‘yes’ for all factors

(Basurto 2013, 577). The data cover 16 Costa Rican biodiversity conservation programs; the

factors are calibrated on a membership scale with increments of 0.2.

As input to ConCovOpt we, thus, use Basurto’s data (see the replication script) with

O = {A=1}. In step (1), ConCovOpt builds the configuration table in Table 4. In this example,

each case corresponds to exactly one configuration—which is not uncommon for f s data.

Since there, again, is only one outcome in O, step (2) then builds one set of exo-groups,

which are listed in column 4 of Table 4.

The main peculiarity of f s data is that configurations and outcomes are not merely instan-

tiated or not instantiated in each case but instantiated with different set membership scores

(i.e. to different degrees) in many different cases. One consequence is that there are often not

10In a nutshell, ereduce searches for minimal hitting sets in DNFcano that prevent DNFcano from being false

in the data from which it is inferred.
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conf. E S C A n exo-groups ϕ(A=1) ϕmax ϕ1

σ1 1.0 1.0 1.0 1.0 1 {σ2} 1.0 1.0 1.0

σ2 1.0 0.6 1.0 0.4 1

{σ2, σ3, σ4} 0.4, 0.6, 1.0 0.6 0.6σ3 1.0 0.6 1.0 1.0 1

σ4 1.0 0.6 1.0 0.6 1

σ5 1.0 0.8 1.0 0.8 1 {σ5} 0.8 0.8 0.8

σ6 1.0 0.4 1.0 0.4 1 {σ6} 0.4 0.4 0.4

σ7 0.4 1.0 1.0 1.0 1 {σ7} 1.0 1.0 1.0

σ8 1.0 1.0 0.0 1.0 1 {σ8} 1.0 1.0 1.0

σ9 0.4 0.4 0.2 0.4 1
{σ9, σ10} 0.2, 0.4 0.4 0.4

σ10 0.4 0.4 0.2 0.2 1

σ11 0.4 0.4 0.6 0.4 1 {σ11} 0.4 0.4 0.4

σ12 0.4 0.4 0.4 0.2 1
{σ12, σ13} 0.4, 0.6 0.6 0.4

σ13 0.4 0.4 0.4 0.6 1

σ14 0.2 0.4 0.2 0.4 1 {σ14} 0.4 0.4 0.4

σ15 0.4 0.4 0.0 0.6 1
{σ15, σ16} 0.4, 0.6 0.6 0.4

σ16 0.4 0.4 0.0 0.4 1

Table 4: Configuration table for the data in Basurto (2013) with exo-groups, rep-list, and

rep-assignments ϕmax and ϕ1.

only imperfect pairs but imperfect n-tuples, where n is the number of different membership

scores an outcome has in an exo-group. An example is exo-group {σ2, σ3, σ4} in Table 4.

Since A has three different membership scores in that group, viz. A=0.4, A=1.0, and A=0.6,

it corresponds to an imperfect triple. That the other 3 non-singleton exo-groups in Table 4

have only two elements is mere happenstance; f s exo-groups can have as many members

as there are values the outcome can take. Still, just as CCM models for other data types,

models for f s data have highest consistency and coverage if they reproduce the behavior of

the outcome as closely as possible. That is, a DNF Φ of an f s model Φ ↔ Y scores the

higher on consistency and coverage, the closer the value of Φ comes to the value of Y for

every exo-group.

Due to the instantiation by degrees in f s data, however, the notion of reproducing the

behavior of an outcome as closely as possible cannot be spelled out exactly as for cs and mv

data (cf. p. 10). While a rep-assignment for the latter data types must reproduce the behavior

of the outcome by only assigning one of two values, 0 or 1, a rep-assignment ϕ for f s data

may assign many more values, viz. the minimum of the conjuncts’ scores in a conjunction

and the maximum of the disjuncts’ scores in a disjunction. The values ϕ can assign to a

particular exo-group are constrained by the membership scores of the exogenous factors in
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that group. More specifically, as ϕ is the output of a disjunction of conjunctions of factor

values or their negations, it can only assign the membership scores of the positive or of the

negated factors in that group, but no other values. To illustrate, take again the exo-group

{σ2, σ3, σ4}, in which E=1.0, S =0.6, and C=1.0. The conjunction E∗S ∗C issues 0.6 for that

group, viz. min(1.0, 0.6, 1.0); correspondingly, e∗c and E∗C return 0.0 and 1.0, respectively,

or s∗C outputs 0.4. But any value other than 0.0 (negation of E and C), 0.4 (negation of S ),

1.0 (value of E and C) or 0.6 (value of S ) cannot be assigned to that exo-group by ϕ, meaning

that those are ϕ’s possible values for that group. Hence, a rep-assignment ϕ reproduces the

behavior of an outcome as closely as possible if, and only if, it holds for every exo-group x

that ϕ assigns one of its possible values to x that comes as close as possible to the outcome’s

membership scores in x. In the case of exo-group {σ2, σ3, σ4} that means that ϕ reproduces

the behavior of A as closely as possible iff it assigns one of 0.4, 0.6, or 1.0 to that exo-

group (but not 0.0); or for exo-group {σ12, σ13} ϕ must assign either 0.4, which is equally

close to A=0.2 and A=0.6 in that group, or 0.6, which is closest to A=0.6. Sometimes the

closest possible value of ϕ exactly matches an outcome, sometimes it is far away from it.

Sometimes only one of the possible values is closest to the outcome, sometimes multiple

values are closest.

Based on this notion of reproducing the behavior of an outcome, step (3) builds the rep-

list ϕ(A=1) in Table 4 for Basurto’s data. From this list, 24 rep-assignments for outcome

A are built in step (4). Just as in cs and mv data, the values of the rep-assignments and

of the outcome are then plugged into the definitions for consistency and coverage in step

(5)—this time, of course, using the fuzzy-set definitions con f s and cov f s in Expression (2).

After eliminating all rep-assignments inducing non-optimal scores, 7 con-cov optima remain,

which are plotted in Figure 2a with their con-cov products in Figure 2b.

Basurto (2013) chooses a consistency threshold of 0.79 and produces an intermediate so-

lution, (21), which coincides with QCA’s conservative solution. At that consistency thresh-

old, QCA issues the two parsimonious solutions (22) and (23).

QCA-IS/CS: C + E∗S ↔ A con = 0.79 ; cov = 0.94 (21)

QCA-PS: C + E ↔ A con = 0.79 ; cov = 0.94 (22)

C + S ↔ A con = 0.79 ; cov = 0.96 (23)

Contrary to our previous examples, these QCA models fall significantly short of a con-
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Figure 2: Plot (a) shows the 7 con-cov optima for outcome A in the data of Basurto (2013)

and the con-cov score of the published model (�), plot (b) the con-cov products of each

optimum and of the published model. N is the con-cov maximum and p the best optimum

realizable by a CCM model.

cov optimum, let alone a con-cov maximum. Moreover, the models are not robust under

variations of the consistency threshold. But thanks to ConCovOpt, we now have concrete

threshold settings at which to search for models with optimal fit. The con-cov maximum

of 〈0.9, 0.957〉 (N in Figure 2) is reached by the rep-assignment ϕmax in Table 4. It turns

out, however, that neither QCA nor CNA nor CCubes find a model at the threshold setting

〈0.9, 0.957〉, not even—as is possible in CNA and CCubes—if the consistency of individual

disjuncts is allowed to fall short of 0.9. There simply does not exist a CCM model for out-

come A at the con-cov maximum. This is not some idiosyncrasy of Basurto’s data. Con-cov

optima for f s data frequently do not have actual CCM models realizing them.

In a cs and mv configuration table, the configuration Γi of exogenous factors in an exo-

group {σi} of an outcome Y is guaranteed not to be instantiated in any other exo-groups of Y .

Hence, if Y is given in {σi}, Γi—properly freed of redundancies—can safely be included as

a disjunct in a model of Y without affecting the model’s consistency in any exo-groups other

than {σi}. It is therefore possible to modularly build CCM models for every rep-assignment ϕi

along the lines of DNFbuild. The DNFbuild approach, however, does not work for f s data,

because if Y is an f s outcome, the configuration Γi in exo-group {σi} may be instantiated

with some non-zero membership in many other exo-groups. In consequence, including Γi

as a disjunct in a CCM model of Y is likely to affect the model’s consistency in exo-groups
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other than {σi}. It may hence happen that a DNF only returns an optimal value for exo-group

{σi} provided it contains factor values that, at the same time, return a non-optimal value for

another exo-group {σ j}, meaning that no DNF returns optimal values for both {σi} and {σ j}.

To make this (abstract problem) concrete, compare the exo-groups {σ9, σ10} and {σ15, σ16}

in Table 4. The rep-assignment ϕmax assigns 0.4 to {σ9, σ10} and 0.6 to {σ15, σ16}. Given the

membership scores E=0.4, S =0.4 and C=0.2 in {σ9, σ10}, a DNF only returns 0.4 for {σ9, σ10}

if it includes E or S or E∗S (but not C) as a disjunct. But E, S and E∗S also return 0.4 for

group {σ15, σ16}, while ϕmax assigns 0.6 to that group. Given the membership scores E=0.4,

S =0.4 and C=0.0 in {σ15, σ16}, a DNF would have to include e or s or e∗s in order to return

0.6 for {σ15, σ16}. But if those factor values are included, 0.6 is issued for {σ9, σ10}, which

again is not the value assigned by ϕmax. In sum, no DNF outputs 0.4 for {σ9, σ10} and 0.6 for

{σ15, σ16}, meaning that no actual CCM model will realize ϕmax.

This problem is avoided if we do not require 0.6 to be issued for {σ15, σ16} but 0.4,

which indeed happens to be assigned by another rep-assignment, ϕ1 (cf. Table 4), yielding

the con-cov optimum 〈0.93, 0.91〉. Moreover, it turns out that there exists an actual DNF

also reproducing all other values of ϕ1. At a threshold setting of 〈0.93, 0.91〉, both CNA and

CCubes find the following model:11

CNA / CCubes: S ↔ A con = 0.93 ; cov = 0.91 (24)

Apart from there being no guarantee that f s con-cov optima are realizable by actual mod-

els, the f s case also differs from ConCovOpt analyses of cs and mv data in its computational

complexity. The most computationally costly step of ConCovOpt is step (5), which calcu-

lates fit scores of rep-assignments. The more rep-assignments are entailed by a configuration

table, the more time-consuming that calculation. In case of cs and mv data, the amount of

rep-assignments is only a function of the number of non-singleton exo-groups, which, in

turn, is a function of the number of imperfect pairs in the data.12 A cs or mv DNF optimally

reproduces the behavior of an outcome Y=ν in every singleton exo-group by returning 1 if Y

takes the value ν in that exo-group, or 0 otherwise. In consequence, no rep-assignment needs

more than one value assignment to optimally capture the outcome’s behavior in singleton

exo-groups. By contrast, it might be that multiple output values of an f s DNF reproduce the

11At a consistency threshold of 0.93, (24) is not found by standard QCA, but if that threshold is lowered to

0.9, (24) is also returned by QCA.
12The amount of rep-assignments is 2n, where n is the number of non-singleton exo-groups (see p. 15).
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outcome’s value in a single exo-group {σi} equally optimally. This happens if the outcome’s

value is not itself among the possible values of the exogenous factors in {σi} and multiple

of those possible values are equally close to the outcome’s value. In that case, multiple

rep-assignments result from the singleton exo-group {σi}. It follows that the number of rep-

assignments does not only grow with the number of imperfect configurations but also with

the number of cases. This, in combination with the fact that rep-assignments may assign

more than two values to exo-groups, yields that exhaustively searching for con-cov optima

is much more computationally demanding for f s data.

Our R implementation of ConCovOpt can calculate the fit scores of about 10 million

rep-assignments in reasonable time. For cs and mv data that means that ConCovOpt can

process data of any sample size with up to 23 imperfect pairs. In case of f s data, however,

the computational limit tends to be reached at intermediate-N sample sizes of 70 to 80 cases

with 10 to 15 imperfect n-tuples (see the replication script for a corresponding benchmark

test). To calculate con-cov optima also for large-N f s data, heuristics are called for. In our

R implementation, we use an approximation method that induces ConCovOpt to calculate

fit scores only for rep-assignments with values closest to the outcome’s median. This is an

efficient approach for finding many, but possibly not all, con-cov optima. Based on this

approximation method, large-N f s data of up to 2000 cases become processable.

Overall, even though heuristics are needed to calculate con-cov optima for large-N data

and there may be no models realizing certain optima, processing f s data by ConCovOpt

prior to actual CCM analyses has a considerable payoff. It identifies a set of consistency

and coverage settings at which concrete models can be searched in a goal-oriented manner.

Without applying ConCovOpt to Basurto’s data, we would have been in the dark as to where

to search for optimal models and would have had to proceed in an inefficient trial-and-error

manner. With ConCovOpt, we straightforwardly found model (24), which has significantly

better fit than Basurto’s published model (21). Moreover, that fit improvement substantively

alters the causal conclusions to be drawn from Basurto’s (2013) study. A causal interpretation

of (24) suggests that the endurance of autonomy only depends on local direct spending.

Contrary to Basurto’s findings, there is no evidence in his data that the other exogenous

factors might be difference-makers of autonomy endurance as well.
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7 Discussion

We end this paper by putting ConCovOpt into proper methodological perspective. Most im-

portantly, ConCovOpt is not intended as a tool for a “simple hunt for high values of consis-

tency and coverage” (Schneider and Wagemann 2012, 148). As emphasized in the introduc-

tion, there are other criteria of model selection. That is, high consistency and coverage are

one asset of a model among others, and models with higher consistency and coverage should

not be unequivocally preferred if they are outperformed by rival models in other respects.

What is more, the problem of model overfitting is still underinvestigated in configu-

rational causal modeling, and there is ample evidence that CCMs have a strong tendency

to overfit if they are induced to do so by overly high consistency and coverage thresholds

(see e.g. Braumoeller 2015; Arel-Bundock 2019). One (heuristic) indication that overfitting

might be taking place is that the complexity of resulting models increases disproportionally

to their increase in model fit. This phenomenon regularly occurs if CCMs are ‘forced’ to

build models reaching con-cov maxima—an example is provided in the replication script.

What would hence be needed is a tool analogous to, say, the Akaike Information Criterion

(AIC) in statistical modeling that strikes a balance between model fit and simplicity. A gen-

eral preference of models reaching con-cov maxima is blind and hazardous.

Still, we have discussed various examples in this paper for which ConCovOpt has helped

to significantly increase the model fit without an increase in model complexity, thus steering

clear of overfitting dangers. Moreover, systematically scanning the model space at optimal

consistency and coverage scores has led to the resolution of model ambiguities in case of

Verweij and Gerrits’ (2015) as well as Basurto’s (2013) data; and it has even called into

question the causal interpretability of a whole data set, viz. in case of the study by Britt

et al. (2000). All of this shows that rendering con-cov optima and maxima transparent may

importantly affect the causal conclusions drawn from configurational data.

Hence, ConCovOpt is intended as a tool for systematically exploring the space of CCM

models at optimal consistency and coverage scores. In recent years, the awareness in the

CCM literature has grown that the space of viable models for analyzed data may be larger

than anticipated (cf. e.g. Baumgartner and Thiem 2017). When the data quality is very high,

meaning when there are no imperfect pairs (or n-tuples), uncovering the whole model space

is a matter of applying the relevant CCM once, at one determinate threshold setting. But in

the presence of imperfect pairs, multiple CCM-runs at various threshold settings are needed.
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Slight changes in thresholds may greatly change the models and there may be no systematic-

ity in how threshold changes affect model changes. ConCovOpt efficiently uncovers con-cov

optima and maxima prior to the application of CCMs. This information makes it possible to

apply CCMs by directly constraining them towards optimal thresholds, without having to go

through a whole array of threshold settings. Also, it can be determined how close actually

obtained models come to con-cov optima and whether the obtained models exhaust the space

of con-cov optima or whether further models should be searched at different settings.

All of this is of importance not only to analysts primarily interested in data-driven causal

inference but also to analysts (of which there are many) viewing CCMs as tools for inferences

primarily rooted in available case knowledge. When it comes to model selection, all types

of CCM analysts have to take model fit into account. Even the analyst who wants to choose

models based on case knowledge does not draw causal inferences from case knowledge

alone. Rather, she analyzes data by means of a CCM in order to be presented with a set of

models to choose from. The ultimate purpose of ConCovOpt and DNFbuild is to contribute

to the completeness of that set.

In sum, models reaching con-cov optima will sometimes turn out to be the best models

overall, sometimes not, and sometimes they will be of methodological interest even without

being causally interpreted. But in one way or another, transparency on the model space at

consistency and coverage optima is univocally valuable for configurational causal modeling.
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