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Abstract

Configurational comparative methods (CCMs) and logic regression methods (LRMs)

are two families of exploratory methods that employ very different techniques to analyze

data generated by causal structures featuring conjunctural causation and equifinality.

Aiming for the same by different means carries a substantive synergy potential, which,

however, remains untapped so far because representatives of the two frameworks know

little of each other. The purpose of this article is to change that. We first level the

field for readers from both backgrounds by providing brief introductions to the basic

ideas behind CCMs and LRMs. Then, we carve out the strengths and weaknesses of the

two method families by benchmarking their performance when applied to binary data

under a variety of different discovery contexts. It turns out that CCMs and LRMs have

complementary strengths and weaknesses. This creates various promising avenues for

cross-validation.

Keywords: INUS causation, conjunctural causation, component causation, equifinality, Co-

incidence Analysis, multi-method research, cross-validation

Many disciplines investigate causal structures with one or both of the following features:

(a) Causes are arranged in complex bundles that only become operative when all of their

components are properly co-instantiated, each of which in isolation is ineffective or

leads to different outcomes.
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(b) Outcomes can be brought about along alternative causal routes such that, when one

route is suppressed, the outcome may still be produced via another one.

For example, of a given set of implementation strategies available to hospitals some strate-

gies yield a desired outcome (e.g., high vaccination uptake or shorter hospitalization times)

in combination with certain other strategies, whereas in other combinations the same strate-

gies may have opposite effects; and the same outcome can be obtained via different bundles

of strategies (e.g., Yakovchenko et al., 2020). Or, a variation in a phenotype only occurs

if many single-nucleotide polymorphisms interact, and various such interactions can inde-

pendently induce the same phenotype (e.g., Culverhouse et al., 2002). Different labels are

used for features (a) and (b): “component causation”, “conjunctural causation”, “alterna-

tive causation”, “equifinality”, etc. For uniformity’s sake, we will subsequently refer to (a)

as conjunctivity and to (b) as disjunctivity of causation, reflecting the fact that causes form

conjunctions and disjunctions, that is, Boolean and- and or-connections.

Causal structures featuring conjunctivity and disjunctivity pose severe challenges for ex-

ploratory methods of causal learning that aim to discover the causal structures underlying

analyzed data.1 Because many theories of causation entail that it is necessary (though not

sufficient) for X to be a cause of Y that there be some kind of dependence (e.g., probabilis-

tic or counterfactual) between X and Y , standard learning methods—most notably Bayesian

network methods (Spirtes et al., 2000)—infer that X is not a cause of Y if X and Y are not

pairwise dependent (i.e., correlated). However, structures displaying conjunctivity and dis-

junctivity often do not exhibit such pairwise dependencies. As an illustration, consider the

interplay between a person’s skills to perform an activity, the challenges posed by that activ-

ity, and the actor’s autotelic experience of complete involvement with the activity called flow

(Csikszentmihalyi, 1975). A simplified (binary) model of this interplay involves the factors

S , with values 0/1 representing low/high skills, C, with 0/1 standing for low/high challenges,

and F, with 0/1 representing the absence/presence of flow. According to Csikszentmihalyi’s

flow theory, flow is triggered by skills and challenges being either both high or both low,

meaning that F=1 has two alternative causes “S =1 and C=1” and “S =0 and C=0”. If the flow

1Exploratory methods of causal learning must be distinguished from methods of causal reasoning that test

models by, for example, inferring predictions from them and that are often termed “confirmatory” (e.g., Peters

et al., 2017, pp. 5-6). This paper is only concerned with the former type of methods.
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# S C F

c1 1 1 1

c2 0 0 1

c3 1 0 0

c4 0 1 0

(a)

S C F

S 1.00 0.00 0.00

C 0.00 1.00 0.00

F 0.00 0.00 1.00

(b)

Table 1: Table (a) contains ideal data generated from Csikszentmihalyi’s (1975) flow model, with S represent-

ing skills, C challenges, and F the outcome flow. The rows stand for types of configurations of these factors,

for example, c1 represents subjects with high skills, facing high challenges and experiencing flow. Table (b) is

the correlation matrix corresponding to Table (a).

theory is true, ideal (i.e., unbiased, non-confounded, noise-free) data on this structure feature

the four configurations c1 to c4 in Table 1a, and no others. As can easily be seen from the

corresponding correlation matrix in Table 1b, there are no pairwise dependencies. In conse-

quence, Bayesian network methods and standard regression methods will struggle to find the

flow model. Although there exist various protocols for tracing interaction effects, these inter-

action calculations face tight computational complexity restrictions when more than two or

three exogenous factors are involved and quickly run into multicollinearity issues (Brambor

et al., 2006). Standard methods of causal learning are simply not designed to group causes

conjunctively and disjunctively—rather, their main aim is to quantify effect sizes.

Discovering causal structures exhibiting conjunctivity and disjunctivity calls for methods

that track causation as defined by a theory not treating pairwise dependencies as necessary

for causation and that embed individual factors in complex Boolean and- and or-functions,

fitting those functions as a whole to the data. The problem, however, is that the space of

possible Boolean functions over even a handful of factors is vast. For n binary factors there

exist 22n

possible Boolean functions, and if we also include factors with more than two values

that number grows even more exponentially. That means methods capable of discovering

causal structures with conjunctivity and disjunctivity must, in addition to relying on a suitable

theory of causation, find ways to efficiently navigate in that vast space of possibilities.

The methods explicitly built for this purpose are the so-called configurational compara-

tive methods (CCMs; Baumgartner & Ambühl, 2020; Ragin, 1987; Rihoux & Ragin, 2009;

Table S1 in the Supplemental Online Material provides expansions for all acronyms used

in this paper). They rely on tools from Boolean algebra, take data on binary, multi-value or
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continuous (fuzzy-set) factors as input, and infer causal structures as defined by the so-called

INUS or MINUS theory (Baumgartner & Falk, 2019; Mackie, 1974),2 which spells out cau-

sation in terms of redundancy-free Boolean dependency structures. One of the distinctive

features of this account is that it does not imply that causes and their outcomes are pairwise

dependent.

CCMs, whose main base is in the social sciences, are not the only methods designed

for learning structures with conjunctivity and disjunctivity from data. In biostatistics, the

problems posed by such structures have led to the development of logic regression methods

(LRMs; Ruczinski et al., 2003; Schwender & Ickstadt, 2007). LRMs are primarily used

to model higher-order interactions in genetic association studies, to which end they express

binary outcomes as Boolean functions, which they fit to data by embedding them in a gener-

alized regression framework. Contrary to CCMs, the primary target of LRMs is not causation

but prediction. Accordingly, LRMs are not expressly linked to the (M)INUS theory and their

models have a non-standarized syntax that may contain redundant elements prohibiting a

causal interpretation. Still, as this paper will show, the redundancies in LRM models can be

eliminated and their syntax transformed into the form of (M)INUS models by suitable post-

processing. That is, although employing very different techniques, LRMs can be tweaked

to discover the same types of structures as CCMs. Targeting the same by different means

creates a substantial potential for synergies. It is the main goal of this paper to bring that

potential to light, as it remains entirely untapped so far because representatives of the two

frameworks know little of each other.3

To level the field for readers from different backgrounds, the first part provides brief in-

troductions to the (M)INUS theory of causation and to the basic ideas behind CCMs and

LRMs. In the second part, we then benchmark CCMs and LRMs under a variety of different

data scenarios simulated from causal structures analyzable by both methods, that is, struc-

2The acronym “INUS” refers to Insufficient but Non-redundant parts of Unnecessary but Sufficient condi-

tions (Mackie, 1974, p. 62). As there are more elegant ways to capture the idea expressed by that expansion,

“INUS” is often used as a mere name for a theoretical framework today—void of its original meaning. Accord-

ingly, “MINUS” is a name, without an expansion, locating the corresponding theory in the INUS tradition.
3Of the 1381 CCM articles currently listed in the bibliography data base of the COMPASSS network

(compasss.org), which is dedicated to CCM research, only one article mentions logic regression (in passing),

namely Clarke (2020). Google Scholar, which has 11500 records for CCMs and 4070 for LRMs (in March

2021), additionally finds Rohwer (2011), who is concerned with CCMs and refers to logic regression in a

footnote.
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tures over binary factors featuring one outcome and up to 9 interacting causes (structures

only processable by one of the two methods include multi-outcome structures, structures

generating mutli-value or continuous data, and structures with 50 and more exogenous fac-

tors). It turns out that CCMs and LRMs have complementary strengths and weaknesses,

which yields a considerable potential for cross-validation.

(M)INUS Causation

Philosophical Background

Even though causation is everywhere in human interaction with the world, it is not pre-

theoretically clear what causation is. Is it an objective feature of our world or is it something

we, as observers, project onto the world? Does it govern what occurs around us or is it a

concept that merely facilitates theorizing about those occurrences? Is it a matter of regular-

ities or of counterfactual dependence or of probability raising, of production, mechanisms,

or powers? Theories of causation answer these questions by providing explicit definitions

of causation. But as there are good arguments for conflicting answers to these questions,

there exist many conflicting theories. As the purpose of this paper is not to contribute to the

theoretical literature on causation but to compare two methods discovering structures featur-

ing conjunctivity and disjunctivity, we can confine ourselves to reviewing the core tenets of

the theory custom-built to account for these features, the (M)INUS theory, without thereby

claiming to be presenting the only or ultimate truth about causation.

The (M)INUS theory belongs to the family of so-called regularity theories,4 according to

which causal relations are nothing over and above specific forms of regular or lawlike behav-

ior patterns. The (M)INUS theory stipulates that general causation, that is, causal relations

between types of events or properties, as in “High skills combined with high challenges

cause flow,” are conceptually prior to relations of singular causation among token events,

as in “Peter’s high skills combined with the high challenges of his tasks cause Peter’s flow

4Through much of the 20th century, regularity theories, which have roots going back to Hume (1999 (1748))

and Mill (1843), were widely criticized (see e.g., Armstrong, 1983; Hausman, 1998), but the groundbreaking

work of Mackie (1974) has revived that theoretical framework and has led to the development of modern

regularity theories that can deal with classical objections (see Baumgartner & Falk, 2019; Graßhoff & May,

2001). Regularity theories belong to the family of difference-making theories of causation, which must be

distinguished from so-called production theories (Hall, 2004).
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on day x.” In other words, there is nothing in a sequence of token events that would make

it causal; rather, a causal relation between two token events is a matter of them properly in-

stantiating causally related event types. Event types or properties are modeled using factors

(or variables or predictors)5 taking specific values. Hence, the (M)INUS theory provides a

definition of what it means for a factor A taking some value α (i.e., A=α) to be causally rel-

evant for another factor B taking a value β (i.e., B=β), where “causal relevance” designates

the relation of “. . . is a type-level cause of . . . ”.

Defining Causal Relevance

For A=α to be causally relevant for B=β, A=α must be a difference-maker of B=β, meaning

that there exists a context in which other causes take constant values and a change from A,α

to A=α is associated with a change from B,β to B=β. Factors in (M)INUS structures can

either be crisp-set (binary), taking two possible values 0 and 1, fuzzy-set, taking continu-

ous values from the unit interval [0, 1], or multi-value, taking an open (but finite) number

of non-negative integers as possible values. For simplicity of exposition, we subsequently

focus on crisp-set factors, which allows for conveniently abbreviating the “Factor=value”

notation. As is conventional in Boolean algebra, we will use “A” as shorthand for A=1 and

“a” for A=0.6 The (M)INUS theory borrows much of the formal machinery from Boolean

algebra, in particular, the operations of negation, ¬A (expressing “not A=1”), conjunction,

A∗B (“A=1 and B=1”), disjunction, A + B (“A=1 or B=1”), implication, A → B (“ if A=1,

then B=1”), and equivalence A ↔ B (“A=1 if, and only if, B=1”).7 In case of crisp-set fac-

tors, Boolean operations are given a rendering in classical logic, which we do not reiterate

here (see e.g., Lemmon, 1965, Chapter 1).

5As the methods discussed in this paper have emerged from different disciplines with different terminolo-

gies, the corresponding literatures use different terms with identical (or easily translatable) meanings. Through-

out the paper, we will hence indicate terminological variations in brackets.
6While this notation significantly simplifies the syntax of causal models, it introduces a risk of misinter-

pretation, for it yields that the factor A and its taking on the value 1 are both expressed by “A”. Disambiguation

must hence be facilitated by the concrete context in which “A” appears. Therefore, whenever we do not explic-

itly characterize italicized Roman letters as “factors”, we use them in terms of the shorthand notation.
7Note that “∗” and “+” are used as in Boolean algebra here, which means, in particular, that they do

not represent the linear algebraic (arithmetic) operations of multiplication and addition (notational variants of

Boolean “∗” and “+” are “∧” and “∨”). For a standard introduction to Boolean algebra see Bowran (1965).

Note also that by “implication” we always mean Boolean implication in this paper, which is also known as

material implication (or material conditional).
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Based on the implication operator the notions of sufficiency and necessity are defined,

which are the two core Boolean dependence relations exploited by the (M)INUS theory:

A∗C∗E is sufficient for B iff (i.e., if, and only if) A∗C∗E → B (i.e., whenever A and C and E

are true, B is true); A +C + E is necessary for B iff B→ A +C + E (i.e., whenever B is true,

A or C or E is true). Many of these relations, however, have nothing to do with causation.

To use a standard (oversimplified) example, the sinking of a barometer in combination with

high temperatures and blue skies is sufficient for weather changes, but it does not cause the

weather; or whenever there is an election, votes are cast or public speeches are made, so

casting votes or making public speeches is necessary for an election, but it does not cause

it. Still, some Boolean dependencies are in fact due to underlying causal dependencies:

long-term exposure to an active virus combined with lacking immunity is both sufficient

and causally relevant for infection; striking a match or exposing it to heat or to flammable

chemicals is both necessary and causally relevant for the match to catch fire.

That means in order to define causal relevance in terms of Boolean dependencies, those

relations of sufficiency and necessity that are due to underlying causal dependencies must

be filtered out. The main reason why most sufficiency and necessity relations do not re-

flect causal relevance is that they either contain redundancies or are themselves redundant

to account for the behavior of the outcome, whereas causal conditions do not feature re-

dundant elements and are themselves indispensable to account for the outcome in at least

one context. Accordingly, to filter out the causally interpretable Boolean dependencies, they

need to be freed of redundancies. In Mackie’s (1974) words, a cause “is an insufficient but

non-redundant part of an unnecessary but sufficient condition”, thus the acronym INUS (p.

62).

While Mackie’s INUS theory only requires that sufficient conditions be freed of redun-

dancies, he himself formulates a problem for that theory, the Manchester Factory Hooters

problem (Mackie, 1974, pp. 81-87), which Graßhoff and May (2001) solve by eliminating

redundancies also from necessary conditions. Accordingly, modern versions of the INUS

theory stipulate that whatever can be removed from sufficient or necessary conditions with-

out affecting their sufficiency and necessity is not a difference-maker and, hence, not a cause.

The causally interesting sufficient and necessary conditions are minimal in the sense that they
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do not contain sufficient and necessary proper parts. Minimally sufficient and minimally nec-

essary conditions can be combined in MINUS-formulas (Beirlaen et al., 2018):

MINUS-formula. A MINUS-formula of an outcome B is a minimally necessary disjunction

of minimally sufficient conditions of B, in disjunctive normal form.8

The following is a simple example:

A∗e + C∗d ↔ B (1)

(1) being a MINUS-formula of B entails that A∗e and C∗d, but neither A, e, C, nor d

alone, are sufficient for B and that A∗e + C∗d, but neither A∗e nor C∗d alone, are necessary

for B. If this holds, it follows that for each factor value in (1) there exists a difference-making

pair, meaning a pair of cases (or units of observation) such that a change in that factor value

alone accounts for a change in the outcome (Baumgartner & Falk, 2019, p. 9). For example,

A being part of the MINUS-formula (1) entails that there are two cases σi and σ j such that e

is given and C∗d is not given in both σi and σ j while A and B are present in σi and absent in

σ j. Only if such a difference-making pair 〈σi, σ j〉 exists is A indispensable to account for B.

For an adequate definition of causal relevance an additional constraint is needed because

not all MINUS-formulas faithfully represent causation. Complete redundancy elimination

is relative to the set of analyzed factors F, meaning that factor values contained in MINUS-

formulas relative to some F may fail to be part of a MINUS-formulas relative to supersets of

F (Baumgartner & Falk, 2019). In other words, by adding factors to the analysis, factor val-

ues that originally appeared to be non-redundant to account for an outcome can turn out to be

redundant after all. Hence, a permanence constraint needs to be imposed: only factor values

that are permanently non-redundant, meaning that cannot be rendered redundant by expand-

ing factor sets, are causally relevant. These considerations yield the following definition of

causal relevance:

Causal Relevance (MINUS). A is causally relevant to B iff (I) A is part of a MINUS-formula

of B relative to a factor set F and (II) A remains part of a MINUS-formula of B across all

8An expression is in disjunctive normal form iff it is a disjunction of one or more conjunctions of one or

more factor values (Bowran, 1965, p. 13).
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expansions of F.9

Two features of the (MINUS) definition make it particularly well suited for the analysis

of structures affected by conjunctivity and disjunctivity. First, (MINUS) does not require that

causes and effects are pairwise dependent. The following is a well-formed MINUS-formula

expressing the flow model from the introduction: S ∗C + s∗c ↔ F. As shown in Table 1,

ideal data generated from that model feature no pairwise dependencies. Nonetheless, if, say,

high skills are permanently non-redundant to account for flow in combination with high chal-

lenges, they are causally relevant for flow subject to (MINUS), despite being uncorrelated

with flow. Second, MINUS-formulas whose elements satisfy the permanence constraint not

only identify causally relevant factor values but also place a Boolean ordering over these

causes, such that conjunctivity and disjunctivity can be directly read off their syntax.

Discovering Causal Relevance

Discovering causal relevance as defined in (MINUS) faces various challenges. First, as it

is possible that data δ produced by a MINUS structure only feature dependencies between

complex Boolean expressions of exogenous factors and a corresponding outcome, δ cannot

be analyzed by searching for cause-effect pairs and then combining them to complex struc-

tures. Rather, analyzing δ calls for fitting expressions of Boolean functions as a whole to δ.

But, as we have seen in the introduction, the space of Boolean functions over more than five

factors is so vast that it cannot be exhaustively scanned. Hence, algorithmic strategies are

needed to purposefully narrow down the search.

Second, condition (MINUS.II) is not comprehensively testable. Once a MINUS-formula

of an outcome B containing a factor value A has been inferred from data δ, the question arises

whether the non-redundancy of A in accounting for B is an artefact of δ, due, for example, to

the uncontrolled variation of confounders, or whether it is genuine and persists when further

factors are considered. But in practice, expanding the set of factors is only feasible within

narrow confines. To make up for the impossibility to test (MINUS.II), data δ should be

collected in such a way that Boolean dependencies in δ are not induced by an uncontrolled

9Note that both the definition of a MINUS-formula and of causal relevance are simplified to suit the pur-

poses of this paper. For a more complete exposition of the MINUS theory see Baumgartner and Falk (2019).
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conf. A C D E B n.obs

σ1 1 1 1 1 0 6

σ2 0 1 1 1 0 1

σ3 1 0 1 1 0 2

σ4 0 0 1 1 0 2

σ5 1 1 0 1 1 3

σ6 1 0 0 1 0 2

σ7 0 0 0 1 0 1

σ8 1 1 1 0 1 4

σ9 0 1 1 0 0 5

σ10 1 0 1 0 1 6

σ11 0 0 1 0 0 2

σ12 1 1 0 0 1 3

σ13 1 0 0 0 1 1

σ14 0 0 0 0 0 3

σ15 1 1 1 0 0 2

σ16 0 0 1 0 1 2

Table 2: Example data with a total of 45 units of observation (cases) instantiating 16 configurations σ1 to σ16

with “n.obs” indicating how many cases instantiate a particular configuration. The data have been simulated

from the MINUS structure in expression (1). B is endogenous, the other factors are exogenous.

variation of latent causes but by the measured factors themselves. If the dependencies in δ are

not artefacts of latent causes, they cannot be neutralized by factor set expansions, meaning

they are permanent and, hence, causal. It follows that in order for it to be guaranteed that

causal inferences drawn from δ are error-free, δ must meet very high quality standards. In

particular, the uncontrolled causal background of δ must be homogenous, meaning that latent

causes not connected to the outcome on causal paths10 via the measured exogenous factors

(so-called off-path causes) take constant values (i.e., do not vary) in the cases recorded in δ

(Baumgartner & Ambühl, 2020, Appendix).

However, third, real-life data often do not meet very high quality standards. To make

this concrete, consider Table 2 featuring a simple small-n data set over the set of factors

F1 = {A,C,D, E, B} simulated from the MINUS structure in expression (1)—to which we

will henceforth refer as the ground truth. Each row in that table represents a configura-

tion of the factors in F1, and the column “n.obs” indicates how many cases instantiate a

particular configuration. Those data have been simulated such that they feature various im-

10By a causal path we mean an ordered n-tuple 〈φ1, . . . , φn〉, where φi is either a factor value or a conjunction

of factor values, such that each φi is a direct cause of φi+1, relative to the analyzed set of factors.
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perfections typical for real-life data. They are fragmented, meaning they do not comprise all

configurations that can be generated by the ground truth. A causal structure with n mutually

independent exogenous factors, each of which can take y values, can generate yn possible

configurations of those exogenous factors. If some of these possible configurations are un-

observed (e.g., because they are rare), the resulting data are fragmented. Given that the

behavior of the factors in F1 is regulated by (1), we should be able to observe the configura-

tion a∗C∗d∗e∗B, which, however, is not contained in Table 2. Furthermore, those data contain

noise—by which we mean configurations that are incompatible with the ground truth. Such

incompatibilities can, for example, be induced by measurement error or confounding. In

σ15, A∗e is combined with b, even though A∗e is sufficient for B according to (1); or, in

σ16 B is given without any of its causes in (1)—hence, its occurrence must be due to latent

causes.11 As a result, Table 2 does not feature relations of strict Boolean sufficiency or ne-

cessity. In such cases, methods for the discovery of MINUS causation can only approximate

strict MINUS structures by fitting their models more or less closely to the data using suitable

parameters of model fit. Moreover, the fact that the instances of B inσ16 must be due to latent

causes indicates that the unmeasured background of Table 2 is not (entirely) homogeneous,

which, in turn, entails that causal inferences drawn from that table are not guaranteed to be

error-free. In order to nonetheless distill some causal information from such data, strategies

for estimating the error risk and the reliability of issued models are needed.

The following two sections review how these problems are addressed by configurational

comparative methods (CCMs) and logic regression methods (LRMs), respectively.

Configurational Comparative Methods

The best known CCM is Qualitative Comparative Analysis (QCA; Ragin, 1987, 2008); a

more recent addition to the family of CCMs is Coincidence Analysis (CNA; Baumgartner,

2009; Baumgartner & Ambühl, 2020). Both QCA and CNA have been developed with a

11Table 2 was more specifically simulated from (1) by, first, assembling all configurations compatible with

(1), each instantiated by one case (with 4 mutually independent exogenous factors that yields 24 = 16 con-

figurations), second, introducing noise by randomly adding 10% of cases incompatible with (1), and third,

randomly multiplying some cases and deleting others in order to introduce fragmentation (see the replication

script in the supplementary online material for a stepwise generation of Table 2).

11



focus on the analysis of data with low noise levels and no more than 15 to 20 exogenous

factors. They aim to build all data-fitting models within user-defined complexity constraints.

Their core parameters of model fit are consistency and coverage (Ragin, 2008, Chapter

3). In crisp-set and multi-value data δ, consistency (con) and coverage (cov) of a Boolean

dependence φ→ ψ are defined as follows:

con(φ→ ψ) :=
|φ ∗ψ |δ

|φ |δ
cov(φ→ ψ) :=

| φ ∗ψ |δ

|ψ |δ
(2)

where φ and ψ stand for expressions of Boolean functions of the factors in δ and | . . . |δ for

the number of cases in δ instantiating the enclosed expression. What counts as acceptable

scores on these fit parameters is defined in thresholds set by the analyst prior to the applica-

tion of QCA or CNA. These thresholds determine how close a dependence in the data must

approximate a strict Boolean dependence in order to pass as one of sufficiency or neces-

sity. By convention, thresholds should be set to some value between 0.75 and 1 (Schneider

& Wagemann, 2012, Section 5.2), the latter of which corresponds to strict Boolean depen-

dence. For instance, if the consistency threshold is set to 0.8, A does not count as sufficient

condition for B in Table 2 because con(A → B) = 17/29 = 0.59, whereas A∗e does count as

sufficient for B—despite the two cases instantiating configuration σ15, which features A∗e

without B—because con(A∗e→ B) = 14/16 = 0.88.

QCA infers MINUS-formulas from data as in Table 2 by means of Quine-McCluskey op-

timization from switching circuit theory (McCluskey, 1965). It conducts a top-down search

that first assembles maximal conjunctions of exogenous factor values that meet the cho-

sen consistency threshold, and thus count as sufficient, in a so-called truth-table; then it

successively eliminates redundant conjuncts, and finally it combines minimally sufficient

conjunctions to minimally necessary disjunctions. While this approach works fine for ideal

data, it faces two problems when applied to non-ideal data. First, when data are fragmented it

tends to require the introduction of unobserved configurations as simplifying assumptions. If

these assumptions are unwarranted, complete redundancy elimination is blocked (Schneider

& Wagemann, 2012, Section 8.2). Second, a top-down search may abort the minimization

prematurely because finding redundancy-free Boolean predictors is not always possible via
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successive factor elimination but may require eliminating multiple factor values at the same

time (Baumgartner & Ambühl, 2020, Section 3.1).

CNA, by contrast, infers MINUS-formulas by means of an algorithm custom-built for

causal modeling that adopts a bottom-up search strategy bypassing truth-tables and is not

affected by either of QCA’s problems when processing fragmented and noisy data. As a re-

sult, CNA is more successful than QCA at avoiding redundancies and, because redundancy-

freeness is crucial for MINUS causation, at inferring correct MINUS-formulas from non-

ideal data. We will therefore use CNA as our CCM of choice in the remainder of this paper.

The CNA algorithm, which is implemented in the cna() function of the cna R pack-

age (Ambühl & Baumgartner, 2021), takes as inputs a data set δ with crisp-set, fuzzy-set

or multi-value factors, consistency and coverage thresholds con and cov, an upper bound

maxstep for the complexity of the models to be built, and an optional ordering parameter

specifying candidate outcomes in δ. The algorithm then starts by searching for all atomic

MINUS-formulas—single-outcome models—that meet con and cov in δ within the confines

of maxstep for all candidate outcomes in the ordering. To this end, it tests, for all can-

didate outcomes, whether the consistency scores of the values of single exogenous factors

in δ meet con; if that is not the case, conjunctions of two factor values are tested, then

conjunctions of three, and so on, until maxstep is reached. Whenever a conjunction meets

con, it is a minimally sufficient condition. Next, single minimally sufficient conditions are

checked for compliance with cov; if that check is negative, disjunctions of two are tested,

then disjunctions of three, and so on, until maxstep is reached. Whenever a disjunction

meets con and cov, it is a minimally necessary disjunction of minimally sufficient condi-

tions, that is, an atomic MINUS-formula. Finally, CNA combines atomic models to complex

MINUS-formulas—multi-outcome models—representing the entire causal structure under-

lying δ. But to maintain comparability with LRMs, which analyze structures with single

outcomes only, we will not further discuss multi-outcome models here and, instead, illus-

trate and benchmark CNA’s performance by focusing on single-outcome structures only.

If CNA is run on Table 2 with a conventional threshold setting of con = cov = 0.8, a

maxstep restricting model complexity to no more than 9 exogenous factor values (or leaves

in LRM jargon), and an ordering specifying B as only candidate outcome, it returns the
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following two models with corresponding consistency and coverage scores:

A∗e + C∗d ↔ B con = 0.895 ; cov = 0.895 (3)

A∗e + c∗D∗e ↔ B con = 0.800 ; cov = 0.840 (4)

These are all the MINUS-formulas inferable from Table 2 satisfying the chosen tuning pa-

rameters. An output consisting of multiple models is common for CNA—just as for many

other methods. It means that the data underdetermine their own causal modeling at the cho-

sen tuning parameters. Accordingly, the above CNA output is to be interpreted disjunctively,

entailing that the ground truth is either (3) or (4).

Model (3), for example, identifies two alternative causal paths to B, one featuring A and e

as parts of a complex cause and another one with C and d as parts of a complex cause. CNA

models are to be interpreted relative to the data from which they have been inferred and to the

threshold settings chosen for that inference. That means, in particular, that they do not pur-

port to be complete representations of underlying causal structures. Rather, they only detail

those causally relevant factor values along with those conjunctive and disjunctive groupings

for which the data contain evidence at the chosen threshold settings. Thus, even though (3)

and (4) do not ascribe causal relevance to E, they must not be interpreted to exclude that E

is causally relevant for B. Or put differently, models (3) and (4) must be interpreted to be

open for expansions, which Mackie (1974, pp. 66-68) expresses with placeholders X and Y

for further conjunctions and disjunctions, respectively:

A∗e∗X1 + C∗d∗X2 + Y ↔ B (3*)

A∗e∗X1 + c∗D∗e∗X2 + Y ↔ B (4*)

For simplicity, we will abstain from including such placeholders in MINUS-formulas models

in this paper, but we ask the reader to keep in mind that, given the frequent fragmentation of

data processed by CCMs, their models only entail claims about causal relevance, not about

causal irrelevance.

Another feature of CCM models that deserves emphasis is that they are sensitive to

changes in tuning parameters. CCMs track difference-making relations on the level of in-
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dividual cases in the data (and not marginal effect sizes on the population level), and what

counts as difference-making evidence changes with changes in tuning parameters, meaning

that resulting models change as well. For instance, if we increase the coverage threshold to

cov = 0.95, CNA returns model (5) for Table 2.

A∗e + C∗d + c∗D∗e ↔ B con = 0.826 ; cov = 1.00 (5)

Or, if we lower the consistency and coverage thresholds to con = cov = 0.7, models (6), (7),

and (8) are issued.

A∗e ↔ B con = 0.875 ; cov = 0.737 (6)

C∗d + c∗D∗e ↔ B con = 0.875 ; cov = 0.737 (7)

A∗d + c∗D∗e ↔ B con = 0.789 ; cov = 0.789 (8)

While sensitivity to tuning settings is problematic from the perspective of methods quan-

tifying effect sizes on the population level because varying effect sizes cannot be given a

consistent causal interpretation, a lot of variance in CCM models merely reflects varying

amounts of inferentially exploited difference-making evidence without implying any incon-

sistent causal conclusions. Two different models inferred with different tuning parameters

do not contradict one another if the causal claims entailed by them stand in a subset relation,

that is, if one of them is a submodel of the other.

Submodel. A model mi is a submodel of another model m j iff all causal relevance ascriptions

as well as conjunctive and disjunctive groupings entailed by mi are also entailed by m j.

For example, (6) ascribes causal relevance to A and e and it places the two causes on the same

path. This (and more) also follows from (3), meaning that (6) is a submodel of (3)—which

makes (3) a supermodel of (6). A submodel does not conflict with its supermodel but merely

makes less (or the same) causal claims.

But not all models inferable from Table 2 are mutually compatible. Model (8), for ex-

ample, places A and d on the same path, whereas (3) places them on different ones. And

even if two models are compatible, it does not follow that they both correctly reflect an un-
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derlying data-generating structure. Hence, criteria are needed to select among all the models

inferable from data. A straightforward selection criterion is overall model fit, which can be

defined as the product of a model’s consistency and coverage scores. Based on that criterion,

(3), which is the ground truth behind the data in Table 2, is preferable over (4), (6), (7), and

(8). However, model (5) has an even higher fit and it entails that not only A∗e and C∗d are

causes of B but also c∗D∗e, which is false. (5) thus increases the fit at the cost of entail-

ing false positives, meaning it is overfitted. This illustrates a common problem of CCMs: in

noisy discovery contexts, the best fitting models often overfit the data (Arel-Bundock, 2019).

Hence, additional selection criteria are needed to counterbalance overall fit.

Parkkinen and Baumgartner (2021) propose a robustness criterion, tailor-made for

CCMs, to reduce the overfitting risk. According to that proposal, the robustness of a model

mi is measured in terms of the degree to which mi’s causal attributions overlap with the

causal attributions of all other models obtained from a series of data re-analyses under sys-

tematically varied con and cov thresholds. More specifically, the robustness of mi corre-

sponds to the number of sub- and supermodels mi has among all the models inferred in such

a re-analysis series. For example, if we re-analyze Table 2 at all con and cov settings in

the interval [0.65, 0.95], varied at increments of 0.1, it turns out that model (6) has 21 sub-

and supermodels among all the resulting models, which is the highest number of all models

and, thus, yields a normalized robustness score of 1. (3) has 16 sub- and supermodels, while

(5) has 15, resulting in robustness scores of 0.76 and 0.71, respectively (see the replication

script for details). That means the most robust model identifies A∗e as a conjunctive cause of

B, which is true according to the ground truth and, hence, does not overfit the data. But (6)

avoids overfitting at the cost of not completely recovering the ground truth, as it misses the

causal relevance of C∗d. Model (3), which not only correctly but also completely represents

the ground truth, has significantly better fit than (6), yet significantly lower robustness. More-

over, (3) is slightly more robust than (5), yet fits the data slightly worse. In practice, the final

model choice is a matter of weighing up these scores. In this particular case, the marginal

gain in fit coupled with a loss in robustness and an increase in model complexity disqualifies

model (5), whereas the choice between (6) and (3) is undetermined—but whichever of these

two models ends up selected, only correct causal inferences will be drawn.
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Logic Regression

The first and best known LRM is Logic Regression (LR; Ruczinski et al., 2003). There ex-

ist various extensions of LR, for example, Monte Carlo Logic Regression (Kooperberg &

Ruczinski, 2005), Logic Feature Selection (Schwender & Ickstadt, 2007), or, very recently,

Bayesian Logic Regression (Hubin et al., 2020).12 Apart from differences in the underlying

algorithms, especially in the fitting and model selection protocols, and in the processed data

types, the main difference between these methods concerns the logical form of their Boolean

outputs. While LR outputs complete Boolean models furnishing sufficient and necessary

conditions for the outcome, though in no standardized syntax (i.e., in no normal form) and

without systematic minimization, the other LRMs output lists of best fitting sufficient con-

ditions of the outcome, each of which syntactically standardized to a conjunction of factor

values, but without combining them to a complete and minimized model that also furnishes

a necessary condition. In light of our previous discussion of the MINUS theory, it is clear

that neither of these outputs lends itself to a causal interpretation—which would require

minimized necessary disjunctions of sufficient conditions in disjunctive normal form.

LRMs are not designed for causal discovery—in fact, no reference to the INUS or MI-

NUS theory (or to any other theory of causation) appears anywhere in the LRM literature.

Instead of tracing causation, LRMs search for association patterns that allow for prediction,

or, as Ruczinski et al. (2003) put it:

we attempt to find decision rules such as ‘if X1, X2, X3, and X4 are true,’ or ‘X5 or

X6 but not X7 are true,’ then the response is more likely to be in class 0. In other

words, we try to find Boolean statements involving the binary predictors that

enhance the prediction for the response. In the near future, one such example

could arise from SNP microarray data (. . . ), where one is interested in finding an

association between variations in DNA sequences and a disease outcome such

as cancer. (p. 476)

Correspondingly, the main field of application of LRMs are genetic association studies where

higher order interactions among single nucleotide polymorphisms (SNPs) are investigated

12An overview over LR and its main extensions is provided in (Schwender & Ruczinski, 2010).
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for their associations with variations in phenotype, for example, in disease risk.

Still, as we shall see below, the Boolean models of LR can be minimized and brought into

the standardized syntax of MINUS-formulas by means of suitable post-processing, without

thereby changing the truth conditions, the predictive content, or the fit of these models. Such

post-processing is possible because LR models not only provide sufficient but also necessary

conditions for the outcome. As the other LRMs abstain from issuing necessary conditions,

their outputs cannot be analogously post-processed without changing the content or fit of

these outputs, meaning without diverting the methods from their intended use. For that

reason, we will subsequently focus on LR and its models only.

LR can efficiently analyze high-dimensional, large-n data (tens of thousands of cases)

with high noise levels (30% and more), but it is devised for binary (crisp-set) outcomes only.

The LogicReg R package (Kooperberg & Ruczinski, 2019), which implements LR, can pro-

cess data with up to 1000 factors and build models with up to 128 exogenous factor values.

No CCM can process such data and construct models of that complexity. But while CNA

returns all data-fitting models within user-defined complexity bounds, including models with

multiple outcomes, LR issues one best fitting model with one outcome only. To this end, it

embeds Boolean expressions in a generalized linear regression model of the following form:

g(E[Y]) = β0 +

t∑

j=1

β jL j, (9)

where E[Y] is the expected value of the outcome Y , g is a link function, and L j are Boolean

expressions, for example, L j = X2
∗x4
∗X7 (Ruczinski et al., 2003, p. 479).13 Models are fit

to the data using standard scoring functions from regression analysis. In the linear case, the

most common score is the residual sum of squares, meaning that LR searches for models of

form (9) such that L j and the estimated parameters minimize the residual sum of squares.

LR represents Boolean expressions as logic trees where factor values appear as leaves

connected via branches through the operators and and or (Ruczinski et al., 2003, p. 478).

13In order to avoid confusion with arithmetic operations, disjunction is commonly symbolized by ‘∨’, con-

junction by ‘∧’, and negation by a superscripted ‘c’ in the LRM literature. For reasons of compatibility with

the CCM notation, we cannot follow this convention here. Hence, the sign “∗” in L j is to be interpreted in terms

of conjunction, not multiplication, yet “+” in (9) stands for addition, not disjunction. Everywhere else in this

paper (and in the replication script), “+” represents disjunction, not addition.
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The search for best fitting models (standardly) implements a simulated annealing algorithm

(Otten & van Ginneken, 1989) that starts from the empty or null model and proceeds by

iteratively performing tree transformations. These transformations are, in each iteration,

randomly selected from a set of six possible moves consisting in addition, deletion, and

alternation of operators or of leaves (Ruczinski et al., 2003, p. 481). After each move, the fit

of the new tree is contrasted with the fit of the old tree. If the fit is equal or better, the move

is always accepted and the next transformation is performed; if the fit is worse, the move is

accepted with the following probability:

a(mo,mn, T ) = min{1, exp((ǫ(mo) − ǫ(mn))/T )}, (10)

where ǫ(mo) is the fit of the old tree, ǫ(mn) is the fit of the new tree and T is a parameter

called temperature that decreases with the progression of the algorithm as specified in a

simulated annealing cooling scheme. (10) entails that, in the early stages of the search, new

trees with worse fit than old trees are accepted with high probability, whereas that acceptance

probability tends towards zero in later stages. The rationale behind initially accepting trees

with decreased fit is to allow the algorithm to scan large portions of the search space without

getting stuck in mere local optima.

As anticipated above, the models resulting from this procedure often are not causally

interpretable—for three main reasons. First, no syntactic constraints are imposed on the tree

transformations, meaning that the ultimately selected tree may have any non-standardized

syntactic form. However, to interpret a Boolean model in terms of causal conjunctivity and

disjunctivity, it must have disjunctive normal form. Second, LR’s set of possible moves al-

lows for the introduction of logically redundant elements into the trees. For instance, if a + B

is the old tree, one possible move is to add a conjunct as follows: a + A∗B. This transforma-

tion, however, adds nothing whatsoever to the content of the model because the new tree is

logically equivalent to the old one and, hence, induces the same fit. As tree transformations

with equal fit are always accepted, that new tree is accepted despite its redundant leaf. But,

of course, the logically redundant A does not make a difference to the outcome and, hence, is

not a cause. Third, LR can embed multiple trees in one and the same regression model. Yet,

multiple tress cannot be interpreted in terms of one causal structure; causal structures with
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conjunctivity and disjunctivity are represented by single Boolean models, that is, by single

trees.

This third obstacle to a causal interpretation of LR models is easily overcome. The

logreg() function, which implements LR in the package LogicReg, provides an argument

ntrees by means of which LR can be constrained to build models with no more than one em-

bedded tree. Removing the first two obstacles is more intricate. It requires a post-processing

of the Boolean expressions (trees) in LR models that standardizes their syntax and mini-

mizes them by eliminating redundancies. Transforming a non-standardized Boolean expres-

sion into a minimized disjunctive normal form is known as Boolean minimization and there

exist various algorithms for this task. But as the task is NP-complete, the running time of all

these algorithms grows exponentially with the number of factors in the Boolean expressions,

such that applying them to LR models caps the maximal complexity of these models some-

where between 20 and 30 factors. Moreover, most algorithms for Boolean minimization

are not tailored towards causal data analysis but towards simplicity and cost-reduction (e.g.,

in electrical engineering). As a consequence, they only output one minimized expression,

even though there often exist multiple equivalent ones, any of which might correspond to the

data-generating causal structure (Baumgartner & Thiem, 2017). An exception is the ereduce

algorithm as implemented in the ereduce() function of the cnaOpt package (Ambühl &

Baumgartner, 2020), which tackles Boolean minimization against the background of causal

data analysis and returns all equivalent minimized disjunctive normal forms.14 In what fol-

lows, we therefore render the Boolean expressions output by LR causally interpretable by

post-processing them with ereduce().

Such post-processing yields that, despite its original focus on prediction, LR can be used

to search for the same causal target as CNA and its models can be interpreted in the same

way as CNA models: they entail causal relevancies as defined by the MINUS theory but

no irrelevancies, submodels do not conflict with supermodels, and if post-processing by

ereduce() yields multiple causal models, they are to be interpreted disjunctively. The main

14In a nutshell, ereduce(x) searches for minimal hitting sets in the Boolean expression x that prevent x

from being false in the data. Another more well-known approach to find all minimalized disjunctive normal

forms is Petrick’s method (Roth & Kinney, 2010, Section 6.3), but there does not exist a ready-made imple-

mentation of that approach in R.
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remaining difference between LR and CNA then is that the latter purposefully builds all data-

fitting models within given complexity bounds, whereas the former randomly moves through

the search space, honing in on one, or (after post-processing) a small number of best fitting

models. One upshot of this difference is that the output of CNA does not vary between

re-analyses of the data using the same tuning parameters, whereas the model(s) issued by

LR may vary from re-analysis to re-analysis. Two central tuning parameters controlling the

LR output are the number (iter) of iterated tree transformations and the maximum number

(nleaves) of leaves (exogenous factor values) in the fitted tree. Repeatedly re-running LR

on the data in Table 2 at iter = 25000, setting the same complexity upper bound as in our

previous CNA application, namely nleaves = 9, and post-processing the resulting trees by

ereduce(), yields a wide array of Boolean models. Here are the models with frequencies n

and fit scores ǫ resulting from one particular series of 100 re-runs:15

A∗C∗d + A∗e + c∗D∗e ↔ B n = 70 ǫ = 0.277 (11)

A∗C∗d + A∗e ↔ B n = 8 ǫ = 0.291 (12)

A∗e + c∗D∗e + C∗d∗E ↔ B n = 5 ǫ = 0.277 (13)

A∗e + C∗d∗E ↔ B n = 2 ǫ = 0.291 (14)

A∗e + C∗d + c∗D∗e ↔ B n = 9 ǫ = 0.277 (15)

A∗e + C∗d ↔ B n = 6 ǫ = 0.291 (16)

To recall, the data in Table 2 are simulated from the MINUS structure in expression (1),

which corresponds to (16) in the above list and, hence, is only returned in 6 of the 100 re-

runs. In the vast majority of re-runs, LR outputs an overly complex model entailing false

causal relevancies and, hence, overfitting the data.

This illustrates that LR also faces a severe overfitting risk, just as do CCMs (or statistical

methods). To reduce that risk, LR provides various instruments, among which there is a

penalty parameter punishing model complexity, analogous to the Akaike Information Cri-

terion (AIC), and a permutation test randomly permuting the outcome and checking whether

15The lower ǫ, the better the fit. Note that ǫ does not express the fit of the Boolean expression alone but of

its embedding in a linear regression model of form (9), which we do not reproduce here. ǫ is calculated via the

residual sum of squares as spelled out by Ruczinski (2000, pp. 31, 47).
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the best model fit obtainable from the permuted data is equal or even better than the best fit

obtained from the original data. The model inferred from the original data should only be in-

terpreted to reflect an actual signal in the data if that check is negative in most permutations.

If we repeat the above re-analysis series of Table 2 (with the same replication seed as before)

setting penalty = 2 (which, according to Kooperberg & Ruczinski, 2019, corresponds to

AIC) and performing the permutation test, overfitting disappears entirely, as all 100 re-runs

yield the same MINUS-formula:

A∗e ↔ B n = 100 ǫ = 0.459 (17)

(17) is a submodel of the ground truth (1) and, as such, only makes true causal claims.

Of course, it has worse fit than models (11) to (16) and it does not completely reflect the

ground truth. But without re-introducing an excessive overfitting risk the complete ground

truth cannot be recovered by LR from Table 2. In particular, increasing iter has no effect

on the output and reducing penalty to 1, again, yields an overfitted model in the majority

of re-runs. This is essentially due to the data’s small sample size of only 45 cases, which

is a size way below LR’s ordinary domain of application. Nevertheless, when its models

are suitably post-processed and complexity sufficiently penalized, LR consistently infers the

very same model from Table 2 that is also the most robust CNA model.

In sum, both CNA and LR can be tuned to correctly analyze the MINUS structure used

to simulate the data in Table 2. Of course, showing that these methods successfully detect

MINUS causation in one specific example serves mere illustration purposes. The next section

therefore performs systematic benchmark tests on a broad array of examples.

Benchmarking

To benchmark the performance of CNA and LR under a variety of discovery contexts, we

set up a series of inverse search trials, first, randomly generating data-generating structures

(or ground truths), second, simulating different types of data from those structures, and third,

processing that data with CNA and LR to measure the degree to which their outputs comply

with various benchmark criteria. This section first explains the details of the test setups and

benchmark criteria and then discusses the test results and the ensuing synergy potential.
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Test Setup and Data Simulation

To ensure the comparability of CNA and LR, the trials must be confined to data dimensions

and data-generating structures analyzable by both methods, meaning that important features

of both methods cannot be tested in the following. As CNA is more restricted in regard to

the dimensionality of the data, we confine the trials to a set F = {A, B,C,D, E, F,G,H} of

8 factors and to sample sizes of no more than 1000 cases, and because LR can only treat

one factor in F as outcome, which moreover must be binary, we restrict F to binary factors

and randomly generate ground truths ∆ from F with a single outcome and between 1 and 9

causes (leaves) each.16 To get a statistically significant performance assessment, we generate

a total of 1000 ground truths ∆.17

The performance of CNA and LR is influenced by the sample size of the data, by the

level of noise, and by the data’s fragmentation (i.e., the ratio of unobserved configurations

to all possible configurations). The higher the sample size and the lower the noise level and

fragmentation, the better the performance of CNA and LR. In order to limit the computational

demand of our test series, we vary only sample size and noise level in a systematic and

controlled manner while randomizing fragmentation. To this end, we first produce ideal

data δid for every ∆ comprising one case per configuration of the factors in F compatible

with ∆. Then, a randomly drawn percentage of configurations, between 0% and 50%, is

removed from every δid to yield fragmented data sets δ f r with fragmentations anywhere

between 0% and 50%. Next, samples of 60, 200, and 1000 cases are drawn from each δ f r,

with replacement and equal selection probability for each case in δ f r. This results in small-

sized data sets δ
f r

60
, intermediate-sized data δ

f r

200
, and large-sized data δ

f r

1000
. Finally, from

each δ
f r

60
, δ

f r

200
, and δ

f r

1000
, four noisy data sets are created by substituting, respectively, 5%,

15%, 25%, and 35% of the cases compatible with ∆ by randomly drawn cases incompatible

with ∆—which incompatibilities can be thought of as resulting from measurement error or

16Note that a cause is a factor taking a value (not a factor). As multiple values of the same factor can be

causes, it is possible to draw structures with more causes than there are factors in F. Examples are (11) or (13).
17The number of ground truths determines the number of trials in each test type. 1000 trials were chosen

because the means of the resulting benchmark scores calculated from different samples of that size were found

to stabilize with standard errors of the means between 0.0004 and 0.015 (see Figure ?? in the Supplemental

Online Material). In other words, we can have high confidence that trials on a sample of 1000 ground truths

drawn from F are representative of the population of all ground truths that can be built from F.
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confounding. Cases are drawn with replacement and each case compatible with ∆ has equal

probability of being substituted by an incompatible case and each incompatible case has

equal probability of being drawn, meaning that noise is unbiased. The result of this procedure

are 12 data types comprising 1000 data sets each, δ5%
60
, δ15%

60
, . . . , δ15%

200
, δ25%

200
, . . . , δ25%

1000
, δ35%

1000
,

where subscripts indicate the sample sizes and superscripts the noise levels.

Next, each of these 12000 data sets is analyzed by CNA and LR. CNA is run with a

robustness check systematically re-analyzing each data set at all con and cov settings in the

interval [0.6, 1], varied at increments of 0.1, and retaining the models in the 95th percentile

of robustness scores. The complexity of models to be built is limited to 9 factor values. LR

is induced to fit exactly one logic tree to the data with the same upper complexity bound of

9 leaves; it is run with penalty = 2, iter = 25000, and a permutation test checking for

signal in the data. The logic tree output by LR is then post-processed by ereduce() in order

to generate all MINUS-formulas corresponding to that tree.

Criteria for Evaluation: Benchmarks

The sets of MINUS-formulas S output by CNA and LR are tested against three increasingly

stringent benchmark criteria, measuring first, whether they are error-free, second, whether

they contain a correct model, and third, to what degree correct models in S completely reflect

the ground truth. A set S is error-free iff it does not entail a causal claim that is false of the

ground truth ∆ (i.e., no false positive). That can be satisfied in two ways:

(a) Either S is empty, meaning no causal inferences are drawn (e.g., because CNA’s fit

thresholds cannot be met or because LR’s permutation test is negative).

(b) Or, S contains at least one18 model mi that is correct of the ground truth ∆, which is

the case iff mi is a submodel of ∆.

So, S satisfies the first benchmark criterion iff it satisfies conditions (a) or (b).19

18Recall that an output containing multiple models is to be interpreted disjunctively; and a disjunction of

models is true iff at least one model is true.
19The reader may wonder why we test a benchmark that can be passed by a trivial method producing empty

outputs by default. The reason is that such a method would be entirely uninformative, which would be visible

in its failing the second and third benchmarks, correctness and completeness; but an empty output produced by

a method that does not fail on the other benchmarks is a valuable piece of information entailing that the data

do not warrant any causal conclusions. The capacity to abstain from drawing causal inferences when no such

inferences are warranted is a crucial methodological asset that deserves to be benchmarked.
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The second benchmark focuses on non-empty sets S only and checks whether condition

(b) is satisfied, meaning whether S actually contains at least one model mi that is a submodel

of ∆, and thus correct. That is, an empty set S does not pass the second benchmark. Finally,

the third criterion assesses the informativeness of correct models. Of two different correct

models one can be more complex than the other and, hence, reveal ∆ more completely. The

completeness benchmark, therefore, measures the degree to which the correct models in S

exhaustively reveal∆. More specifically, completeness amounts to the ratio of the complexity

of the most complex correct model in S to the complexity of ∆, where complexity of a model

mi is understood (as is standard for both CNA and LR) as the number of factor values (leaves)

in mi. That is, contrary to the first and second benchmarks, which can only be passed or not,

the third benchmark can be passed by degree, but when S is empty or does not contain a

correct model, completeness is 0 by default.20

Results

The results are presented in the bar-charts of Figure 1. The x-axes break them down by

the noise levels, the columns by the sample sizes, and the rows by the benchmark criteria.

The error-freeness and correctness scores represent the ratios of CNA and LR analyses that

produce outputs complying with error-freeness and correctness, respectively. For example,

CNA’s score of 0.99 in the first bar of the top panel in the left column means that CNA’s

output is error-free in 99% of the trials run on the 1000 data sets of type δ5%
60

. By contrast, the

completeness scores represent the degrees to which correct models completely exhibit the

ground truths averaged over all 1000 analyses of a corresponding data type. For example,

LR’s score of 0.39 in the last bar of the bottom panel in the right column means that LR

recovers 39% of the ground truth, on average, in 1000 trials performed on data of type δ35%
1000

.

The overall finding is that CNA and LR have strengths and weaknesses in different bench-

marks. LR has advantages in error-freeness, CNA in correctness, and the completeness

scores are in favor of CNA in small-sized data and in favor of LR in large-sized data. More

specifically, when averaged over all data types, LR avoids erroneous inferences in 86% of

20Unlike completeness, we do not quantify correctness because there currently does not exist a satisfactory

quantitative correctness measure for MINUS models. It is not trivial to meaningfully quantify the seriousness

of errors. For some more details on this problem see Parkkinen and Baumgartner (2021).
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Figure 1: Bar-plots displaying mean scores of Coincidence Analysis (CNA; in black) and Logic Regression

(LR; in grey) in error-freeness (i.e., ratio of trials without false positive), correctness (i.e., ratio of trials in which

a correct model is recovered), and completeness (i.e., ratio of the ground truth complexity recovered), averaged

over 1000 trials in each test type, broken down by noise levels (on x-axis) and sample sizes (from left to right).

These means have standard errors between 0.0004 and 0.015.

the trials, finds a correct model in 64%, and recovers 39% of the ground truth complexity,

whereas CNA’s output is error-free in 82%, contains a correct model in 75% of the trials,

and recovers 44% of the ground truths. Further differentiation shows that CNA outperforms

LR in both error-freeness and correctness in low noise data, committing almost no false pos-

itives and finding a correct model in at least 90% of the trials. But those scores plummet

when CNA is applied to high noise data, independently of the sample size. At 35% noise,

CNA issues a correct model in only 34% of the trials, drawing an erroneous inference in

more than half of the trials when the data have small or intermediate size. Contrary to its

correctness scores, CNA’s error-freeness scores in high noise data increase with increasing
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sample sizes, but only reach an acceptable value (i.e., 0.73) if n = 1000.

LR, by contrast, maintains a constant score on error-freeness independently of the noise.

Remarkably though, scores in large-n trials are roughly 20 percentage points lower than the

corresponding scores in small-n trials. This finding requires explanation. LR successfully

avoids false positives in trials on high noise data with small sample sizes because it mostly

outputs no models at all—which can be read off the huge differences between LR’s error-

freeness and correctness scores in those trials (the only way to avoid false positives without

actually recovering correct models is by issuing no model). Whereas LR is right to mostly

abstain from drawing inferences from data of types δ35%
60

and δ35%
200

, data of type δ25%
60

would

allow for finding a correct model in 65% of the trials, which is CNA’s correctness score in

those trials. Hence, LR is overly cautious in drawing inferences from small-n data with no

more than 25% noise. At the same time, LR avoids erroneous inferences equally frequently

as CNA in the high noise trials on large-n data and outputs significantly more correct models.

That is, LR’s permutation test effectively induces LR to abstain from drawing an in-

ference when none is warranted (e.g., in δ35%
60

and δ35%
200

). But when LR actually draws an

inference that inference tends to be less frequently correct than CNA’s, except for the high

noise trials on large-n data. By contrast, running CNA with a robustness check in the thresh-

old interval [0.6, 1] very reliably leads to the recovery of a correct model, but it does not

prevent CNA from too frequently committing false positives when analyzing small- and

intermediate-sized data with high noise levels.

The cautiousness of LR when processing small-sized data yields that it recovers the

ground truths only half as completely when n = 60 as does CNA; but both methods find

only fractions of the complete ground truths, namely 17% (LR) and 36% (CNA), on average.

These low completeness scores are due to the fact that small-n data have high fragmentation.

It follows that a lot of information about the possible behavior patterns of the analyzed fac-

tors and, thus, about the underlying causal structure is missing. As is to be expected, the

completeness scores of both methods increase with increasing sample sizes—despite all data

types in our test series being fragmented to some (randomized) degree. Averaged over all

noise levels, CNA recovers 50% of the ground truths from large-n data and LR 59% (see

Figure S1 in the Supplemental Online Material for more details).
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These findings must be further contextualized by relativizing them to the number of mod-

els output. Averaged over all trials of the series, CNA’s exhaustive model search over a large

interval of threshold settings results in an output comprising 5.4 models, whereas LR’s search

heuristic coupled with its frequent abstinence to draw a causal inference yields an average

of only 0.78 models. That means, in return, that in the vast majority of trials in which LR

draws an inference that inference (after post-processing) is unambiguous, featuring exactly

one model, whereas when CNA draws an inference it mostly issues multiple models scoring

equally on fit and robustness. The difference in model numbers is particularly large in the tri-

als on high noise data of small to intermediate sizes. On the one hand, an analyst is unlikely

to draw determinate causal conclusions when she is presented with more than a handful of

models, which reduces the risk of drawing false conclusions from high noise data, but on

the other hand, it means that the edge CNA has over LR as regards the correctness of its

output comes at the price of a significantly higher ambiguity ratio. In other words, although

there mostly exists a multitude of equally well fitting MINUS models, LR’s average correct-

ness score of 0.64 shows that its simulated annealing algorithm coupled with a complexity

penalty, a permutation test, and suitable post-processing is remarkably successful at honing

in on one model that is actually true of the ground truth.

This finding, again, needs contextualization. First, in those trials in which LR issues a

(non-empty) model, that model has a mean complexity of 3.3 leaves, whereas CNA’s models

have a mean complexity of 4.1. The less complex a model, the fewer causal ascriptions it

makes, and the more likely it is that no false ascriptions are made. It follows that it is less

difficult to find at least one correct model at LR’s mean output complexity than at CNA’s.

Second, LR’s permutation test and the need to post-process its models come at a significant

cost to computing times. When our test series is run, in parallel, on a computer with 16 EPYC

cores, 3 GHz and 32 GB RAM, LR needs 0.15 seconds, on average, to analyze a data set

without a permutation test and post-processing, but adding such a test and post-processing

increases the average execution time to 4.8 seconds—in which time, to repeat, LR does not

produce all MINUS models complying with the tuning settings. By contrast, it takes 0.88

seconds, on average, for CNA to find all models meeting the tuning settings. Additionally

checking the robustness of these models increases execution times to 2.7 seconds, on average.
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Synergy Potential

We have seen that CNA and LR can both be used to search for MINUS causation. The

fact that the two methods conduct this search by means of very different techniques creates

an ideal setting for synergies. On the one hand, exhibiting a performance difference in a

particular discovery context gives the underperforming method a clear indication of possible

improvements. For example, our results demonstrate that CNA needs to be complemented

by a procedure for assessing signal strength in the data, analogous to LR’s permutation test.

Such a procedure will prevent CNA from misfiring so frequently in high noise data; at the

same time, judging by LR’s template, it can be expected to increase CNA’s computation

times considerably. Our results also show that LR’s permutation test is too cautious and

the complexity penalty approximating AIC too restrictive when analyzing low noise data.

There might be a way to relax those constraints and, thereby, increase LR’s correctness and

completeness scores without falling back into the overfitting pitfall.

On the other hand, the complementarity of the two methods’ strengths and weaknesses

opens the way for cross-validation studies applying both methods to the same data. To make

this concrete, we identified those trials in our benchmark experiment in which CNA and

LR output at least one identical model (which also obtains if both return the empty model).

The ratios of those trials are plotted in Figure 2, along with the error-freeness, correctness,

and completeness scores reached by those identical models. CNA and LR issue an identi-

cal model in one fourth of the trials, on average. Independently of the noise or sample sizes,

these identical models very rarely induce a false positive, as they reach a mean error-freeness

score of 0.95, which is significantly higher than either of the methods’ individual scores. Av-

eraged over all trials, there is a correct model among 89% of identical models. When only

looking at the data types for which both CNA and LR typically output a non-empty model,

namely all data types except for δ25%
60

, δ35%
60

, and δ35%
200

, there is a correct model among 95%

of identical models. Comparing these scores to the mean correctness scores in the popula-

tion of CNA models (0.75) and LR models (0.64) renders the potential of cross-validation

palpable. An identical output of both methods is significantly more likely to be true of the

data-generating structure than one that is not cross-validated.

What is more, the increase in correctness scores is not due to the fact that identical models
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Figure 2: Black bars represent the ratios of trials in which Coincidence Analysis (CNA) and Logic Regression

(LR) produce an identical model. Increasingly lighter shades of grey represent the error-freeness, correctness,

and completeness scores reached by the subpopulation of identical models.

would be less informative (and thus more likely to be correct). Though models returned by

both methods are somewhat less complete than CNA’s models in small-n data, they reach

higher completeness scores than CNA and LR individually in the trials with intermediate-n

and large-n data. In particular when analyzing data with n = 1000, a cross-validation study

finding identical models reveals 80% of the ground truths, on average—independently of the

noise. In sum, although it only happens in one fourth of the trials that CNA and LR produce

the exact same models, when it happens, the corresponding models receive a validation boost

in error-freeness and correctness without compromising on completeness.

While it is not very frequent that CNA’s and LR’s outputs contain identical models, it

happens in 70% of the trials that a CNA model and an LR model are related by the sub-

model relation. In trials in which LR does not mostly abstain from returning a model (i.e.,

in all trials except for the ones on δ25%
60

, δ35%
60

, and δ35%
200

), it holds in 85% of the analyses, on

average, that at least one of the CNA models is a submodel of one of the LR models, or

vice versa. That is, CNA and LR often output closely related models that differ only in the

degree of detail with which they represent the underlying causal structures. The bar-charts

in Figure 3 depict the ratios of trials in which the two methods output models related by the

submodel relation, along with the error-freeness, correctness, and completeness scores in the

population of those related models. As in case of identical models, submodels reach a very

solid mean error-freeness score of 0.96. Because being identical is a special case of being
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Figure 3: Black bars represent the ratios of trials in which some models of Coincidence Analysis (CNA) and

Logic Regression (LR) are related by the submodel relation. Increasingly lighter shades of grey represent the

error-freeness, correctness, and completeness scores reached by the subpopulation of models related by the

submodel relation.

related by the submodel relation, most submodels are less complex than their supermodels;

and because making fewer causal claims correlates with making fewer mistaken claims, the

mean correctness score over all trials among the submodels is even higher than among the

identical models, namely 0.92. For the same reason, however, the mean completeness score

among submodels is only 0.39 and, thus, lower than among identical models and CNA mod-

els taken separately. That means if CNA models are submodels of LR models, or vice versa,

those submodels receive a validation boost in correctness at the price of reduced complete-

ness.

Discussion

Limitations

Before we conclude, we want to highlight the relevant limitations of our analysis. Our test

series only simulates a proper subset of possible discovery scenarios. For instance, it does not

analyze the effects of varying latent causes on the performance of CNA and LR. We simulate

data from the complete data-generating structures, meaning there are no unmeasured causes

in our tests. As long as latent causes are homogenized in the unmeasured causal background

of the data, they do not confound the data and, hence, do not constitute a problem for CNA

or LR (see Baumgartner & Ambühl, 2020). But if unmeasured causes, in particular common
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causes of two (or more) measured factors, vary in an uncontrolled manner, they negatively

affect the performance of any causal discovery method. It would be an important topic for a

follow-up study to determine whether or not the performances of CNA and LR are differently

affected by uncontrolled variation in latent (common) causes.

Furthermore, our analysis introduces fragmentation and noise at random. Yet of course,

such data deficiencies may be non-random in real-life data. Certain configurations may be

more likely than others to be unobserved, certain factors may be more easily affected by

measurement error, or certain types of measurement error may be more frequent than others.

If fragmentation or noise are biased, they tend to induce stronger spurious dependencies than

if they are unbiased; and stronger spurious dependencies are more likely to be mistaken for

causal dependencies. An important question we cannot answer with our analysis, hence, is

whether there are relevant differences in how CNA and LR handle non-random fragmentation

and noise and whether the cross-validation potential is similar under these circumstances.

Finally, it should be reiterated that our benchmark experiments only scrutinize parts of

the inferential power of CNA and LR. To ensure comparability of the results, we restrict our

tests to data processable by both of them. CNA can also process multi-value and fuzzy-set

data as well as data generated by multi-outcome structures. But the dimensionality of the

data CNA can handle in reasonable time is limited to about 20 exogenous factors. Without

permutation test and model post-processing, LR, by contrast, quickly finds models for data

featuring a couple hundred exogenous factors. But the applicability of LR is restricted to

binary outcomes and it cannot process data generated by structures with multiple outcomes.

Conclusions

Within the scope limitations of our analysis, we find a substantive cross-validation potential.

Any study analyzing data processable by both methods can expect to profit, in one way or an-

other, from such cross-validation. In case of low noise data, CNA should be the primary tool

of analysis. But CNA often outputs more than one equally fitting model, leaving the analyst

with the task of model selection. Our results suggest that also finding one of those model

candidates or a submodel of it by LR provides a strong incentive to select that model, because

a cross-validated (sub)model has a roughly 90% chance of being true of the data-generating
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structure. That is, in low noise settings, cross-validation is an instrument for ambiguity re-

duction. When analyzing data with intermediate noise levels, cross-validation serves the

purpose of enhancing the correctness of the inference. A non-empty model returned by both

methods is about 20% more likely to be correct than a model that is only returned by one

of them. In high noise settings, LR—with permutation test and post-processing—should be

the primary tool of analysis. If LR abstains from issuing a model, any model CNA might

infer from the same data should be met with skepticism. But if LR draws an inference from

high noise data that can be cross-validated with CNA, our results suggest that that model

may be causally interpreted despite the noisy discovery context. As the mean correctness

of cross-validated models that are related by the submodel relation is roughly 75% in high

noise contexts, it is even justified to give preference to the CNA model in that case, if it is a

supermodel of the LR model.

Moreover, our results provide no reason to conclude that this synergy potential is re-

stricted to data processable by both methods. Rather, we expect CNA and LR to be imple-

mentable sequentially as data pre-processing tools for one another as well. If an analyzed

process is hypothesized to involve multiple outcomes, a preliminary CNA analysis might

partition the data into batches pertaining to the separate outcomes, each of which could then

also be processed by LR. Or, if data dimensionality is beyond CNA’s limitations, LR might

be employed to build a preliminary model identifying a limited group of relevant factors,

based on which the data could then be subsetted to a dimensionality manageable by CNA,

which, in turn, would render the data amenable to a cross-validation study as described in the

previous paragraph. Of course, these suggestions are tentative. Properly fleshing them out

will require separate studies. But in light of the promising results obtained in the restricted

scope of our analysis, we conclude that such follow-up studies are worthwhile at any rate.

This paper aimed to bridge the gap between methodological communities with very little

mutual exchange by showcasing two methods that can be used to uncover causal structures

featuring conjunctivity and disjunctivity. Configurational comparative methods as exempli-

fied by CNA and logic regression methods as LR apply very different techniques for that pur-

pose and have complementary strengths and weaknesses. While the former have correctness

and completeness advantages, the latter have advantages in error- and ambiguity-freeness.
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In light of that complementarity, the potential for cross-validation is considerable. So far,

however, it remains entirely untapped. We have made a first attempt at paving the way for

the future exploitation of that potential.
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Figure S1: Histograms displaying the frequency (on the y-axis) of correct Coincidence Analysis (CNA) models

(in red) and Logic Regression (LR) models (in turquoise) reaching the completeness ratios on the x-axis. The

rows break the trials down by the noise levels, the columns by the sample sizes.
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Figure S2: Box-and-whisker plots showing the distribution of mean benchmark scores obtained from 60 repli-

cations of the trials on data of types δ5%
1000

and δ35%
60

(i.e., the best and worst case trials) simulated from 1000

different ground truths each. Boxes represent the IQR (i.e., inter-quartile range between the 25th and 75th

percentile). Whiskers extend to 1.5 × IQR. Dots represent outliers.
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Legend for acronyms

Acronym Expansion

AIC Akaike Information Criterion

CCM configurational comparative method

CNA Coincidence Analysis

IQR inter-qualia range

LR Logic Regression

LRM logic regression method

INUS insufficient but non-redundant part of unnecessary but suf-

ficient condition

MINUS 〈name without an expansion〉

NP-

complete

nondeterministic polynomial-time complete

QCA Qualitative Comparative Analysis

Table S1: Table providing expansions for all acronyms used in the main text.
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